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Abstract

We characterize coproducts and free objects on indexed families of to-
tally ordered sets in several categories of complete, distributive, modu-
lar and algebraic lattices via semitopologies on a product poset. Conse-
quently, we derive necessary and sufficient conditions for the factorization
of N distinct filtrations of a complete modular algebraic lattice through a
completely distributive lattice L. In the case N = 2, this condition realizes
a simple compatibility criterion. Various incidental results are reported,
which include a special role for well orders.

1 Introduction

Multifiltrations of modular lattices have recently begun a more active role in
topological data analysis [5, 6, 7]. By definition, a filtration on an object A in
an abelian category is an order preserving map I→ Sub(A), where I is a totally
ordered set and Sub(A) is the lattice of subobjects of A, ordered under inclusion.
As such, it is natural to study universal objects – including coproducts and
free objects – associated to indexed families of lattice homomorphisms ( f α :
I→ L)α∈A in categories common to homological algebra. These including the
following.

CD the category of complete, completely distributive lattices and complete lat-
tice homomorphisms

UD the category of upper continuous distributive lattices and lattice homo-
morphisms

MA the category of modular algebraic lattices and complete lattice homomor-
phisms

BM the category of bounded modular lattices and bound preserving lattice
homomorphisms
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BD the category of bounded distributive lattices and bound preserving lattice
homomorphisms

Main results are stated and proved in §2. In §3 we supply supporting tech-
nical arguments. In §4 we prove Theorem 10, the main technical result.

1.1 Motivation and background

The free modular lattice on two chains plays a fundamental role in the homo-
logical algebra generally, and Puppe exact categories in particular [3]. It has
great practical utility in studying pairs of filtrations f 0, f 1 : I→ Sub(A), where
I is a finite totally ordered set, A is an object in an abelian category, and Sub(A)
is the lattice of subobjects of A. Such bifiltrations are common in homological
algebra, arising, for example, from every nested family of topological spaces
(Xi)i∈I.

Difficulties arise when I is not finite. Much of the machinery developed
in homological algebra subtly relies upon the fact that the free modular lat-
tice on two chains is a complete lattice and, more specifically, isomorphic to
an Alexandrov topology. The free modular lattice on two infinite chains fails
this condition, as does the free complete modular lattice. The former is not
complete, and if the latter could be realized as an Alexandrov topology then
every complete modular lattice would easily be shown to be upper and lower
continuous, hence completely distributive.

In fact, CD the correct category in which to work if one demands that the
free object be an Alexandrov topology. Its free objects (with respect to the for-
getful functor to the category of partially ordered sets and monotone maps
between them) are Alexandrov topologies [11], and if a pair of filtrations factor
through any complete homomorphism K→L with K an Alexandrov topology,
then their image necessarily lies within a completely distributive sublattice lat-
tice, and a complete map from the free CD lattice is available.

The principle question, therefore, is not what free object to choose, but how
to determine whether a pair of totally ordered subsets of a complete modular
lattice extend to a completely distributive sublattice of L. An exact criterion, in
the special case where L is algebraic, is among the principle contributions of
this text.

Theorem 12. If I1, I2 are complete totally ordered sublattices of a modular algebraic
lattice L, then I1∪ I2 extends to a complete, completely distributive sublattice iff∧

b∈B

(a∨b) = a∨
∧
b∈B

b

for each element a ∈ I1∪ I2 and each set B contained in I1 or in I2.

This result affords a substantial extension to the existing theory of homo-
logical persistence. In [7], for example, we remove the constructibility criterion
imposed by Patel to define the type-B persistence diagram [9], and evince a
novel stability result.
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While single parameter persistence plays a central role in many modern ap-
plications, multiparameter persistence has matured as a field in its own right.
The ideas of this text naturally extend to N-parameter persistence, and its com-
panion work [7] has stimulated novel stability results in multiparameter gen-
eralized persistence [8]. Where possible, we therefore state results in terms
filtrations indexed over arbitrary sets, rather than restricting to bifiltrations.

1.2 Notation and conventions

By complete lattice we mean a lattice with arbitrary meets and joins. An un-
bounded complete lattice is one with arbitrary nonempty meets and joins. A
complete lattice homomorphism is a map of complete lattices that preserves ar-
bitrary meets and joins. An unbounded complete lattice homomorphism is a map
of unbounded complete lattices that preserves arbitrary nonempty meets and
joins.

Given a partially ordered set P, we write P∗ for the order dual. A poset
is bounded if it has top and bottom elements, denoted 1P and 0P, respectively,
or, where context leaves no room for confusion, simply 1 and 0. A poset ho-
momorphism f : P→ Q is bounded if both P and Q are bounded, and f pre-
serves bounds. A (bounded) filtration of P is a (bounded) poset homomor-
phism I→ P, where I is a totally ordered set. If P is a sub-poset of a Q and
q ∈Q, we write P≤q for the set {p ∈ P : p≤ q}. For convenience, given p ∈ P put
↓̊(p) = {q ∈ P : q < p}.

An element j of a lattice L is completely join irreducible if
∨

S = j implies
j ∈ S. In this case the strict lower bounds of j contain a unique greatest element,
denoted pred( j). A set S⊆ L is join-dense if every element of L can be expressed
as a join of some (possibly empty, possibly infinite) subset of S. Meet density
is dual. We say that L has completely dense irreducibles if completely join
irreducibles are join dense and completely meet irreducibles are meet dense.
We denote

J(L) the poset of completely join irreducible elements of L
P(P) the lattice of subsets of P, ordered under inclusion
A(P) the lattice of decreasing subsets of P, ordered under inclusion; equiva-

lently, the Alexandrov topology of P∗

S(P) the bounded sublattice of A(P) generated by all sets of form ↓ (p)

We similarly write J∗(L) for the set of completely meet irreducible elements
of L, ordered as in L. Note that lattice S(P) is a semitopology on the ground set
of P. However, it is not an Alexandrov topology, complete lattice, or complete
sublattice of A(P), in general.

2 Main results

The following results are among the most relevant to current applications in
topological data analysis. We group them according to universal property:
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map extensions, free objects, and coproducts. Top-level proofs appear together
with their theorems. Supporting results may be found in §3.

2.1 Extension maps

Theorem 1 (Extensions to CD, Tunnicliffe 1974, [10]). Suppose that a complete
lattice K is generated by its subset X , and that L is completely distributive. Then a
function f : X → L extends to a complete homomorphism g : K→ L if and only if∧

f (S) ≤
∨

f (T ) for all S,T ⊆ X such that
∧

S ≤
∨

T . The extension is unique, if it
exists.

Lemma 2. Let f be an arbitrary, possibly unbounded homomorphism from a distribu-
tive lattice K to a complete lattice L. Suppose that K has completely dense irreducibles,
and assume that every element of K may be expressed as a finite join of elements of S,
for some fixed S ⊆ K. If L is complete, then f preserves existing (finite, empty, and
infinite) joins iff f (s) =

∨
j≺s f j for all s ∈ S.

Proof. Let T be any subset of K such that
∨

T exists. By hypothesis, there exists
finite U ⊆ S such that

∨
T =

∨
U . Proposition 17 implies that

⋃
t∈T J(K)≤t =⋃

u∈U J(K)≤u, hence j ≺ u for some u ∈U iff j ≺ t for some t ∈ T . Consequently,

f∨T =
∨

u∈U

fu =
∨

u∈U

∨
j≺u

f j ≤
∨
t∈T

ft .

The reverse inequality is clear, since f∨T bounds every ft from above.

2.2 Free objects

First let us recall some classical results on free objects in CD and BM. Given a
poset P, write Â(P) for the family of decreasing subsets S ⊆ P such that both S
and P−S are nonempty.

Definition 1. If P is a partially ordered set andX∈ {A, Â}, then the free embedding
µ : P→ AX(P) is the map defined by µ(p) = {T ∈ X(P) : p /∈ T} for all p ∈ P.

Remark 1. Let µ : P→ AX(P) be the free embedding.

1. If X= A then µ(p) = A(P− ↑ p).
2. If X= A then µ fails to preserve existing top and bottom elements.
3. If X= Â then µ preserves existing top and bottom elements.

Theorem 3 (Tunnicliffe 1985, [11]). Let P be a partially ordered set, L be a complete,
completely distributive lattice, and f : P→ L be an an order-preserving function. In
the following diagram,

AX(P)

P L

µ g

f
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let µ denote the free embedding.

1. If X= A then the diagram commutes for exactly one complete lattice homomor-
phism g.

2. If X= Â then the diagram commutes for exactly one unbounded-complete lattice
homomorphism g.

In either case, the unique commuting homomorphism satisfies

g(S) =
∨

X∈MS

∧
f (X) =

∧
Y∈NS

∨
f (Y )

where MS = {X ⊆ P :
∧

µ(X)⊆ S} and NS = {X ⊆ P : S⊆
∨

µ(X)}.

Corollary 4 (Free objects in CD, Tunnicliffe 1985, [11]). Let BP denote the category
of bounded posets and bounded poset homomorphisms. Likewise let B̂P denote the cat-
egory of posets and poset homomorphisms, and ĈD denote the category of unbounded-
complete, completely distributive lattices and unbounded-complete homomorphisms.

1. The forgetful functor ĈD→ B̂P has a left adjoint carrying P to AÂ(P).
2. The forgetful functor CD→ BP has a left adjoint carrying P to AÂ(P).
3. The forgetful functor CD→ B̂P has a left adjoint carrying P to AA(P).

Definition 2. Let (Pα)α∈A be a family of small partially ordered sets, and Q be any
subset of the cartesian product ∏α∈A Pα . The canonical filtration of Q by Pα is

λ
α : Pα → A(Q) x 7→ {q ∈ Q : qα ≤ x}.

Similarly, the canonical filtration of Q by A(Pα) is the map

λ
α : A(Pα)→ A(Q) S 7→ {q ∈ Q : qα ∈ S}.

When these maps coincide with coprojections of a coproduct structure on A(Q), we call
them canonical coprojections.

Given a sequence I1, . . . ,IN of disjoint bounded chains, write P(I1, . . . ,IN)
for the partially ordered set obtained by identifying the top (respectively, the
bottom) elements in each ground set.

Theorem 5 (Free objects in BD). Let I1, . . . ,IN be disjoint bounded totally ordered
sets. Then S(∏m Im

>0) is the free object on P(I1, · · · ,IN) with respect to the forgetful
functor BD→ BP. Equivalently, it is a coproduct in BD with canonical coprojections
λ m : Im→ S(∏m Im

>0).

Proof. The proof is a rudimentary exercise of universal algebra, and closely
mirrors that of Theorem 6. The main observation is that every element in
the bounded sublattice generated by a collection of bounded totally ordered
sublatices C1, . . . ,CN can be expressed as a finite join of elements in the set
{
∧

i : i ∈ ∏C}. This case is somewhat easier than Theorem 6, however, since
distributivity comes for free, and we need no theorem of Birkhoff.
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Theorem 6 (Free objects in BM, Grandis [3]). Let I1 and I2 be disjoint bounded
totally ordered sets. Then S(I1

>0× I2
>0) is the free object on P(I1,I2) with respect to the

forgetful functor BM→ BP. Equivalently, the cospan of canonical filtrations I1 −→
S(I1

>0× I2
>0)←− I2 is a coproduct in BM.

Proof. Claims 1 and 2 are evidently equivalent. A similar formulation and ar-
gument may be found in [3]. For convenience, identify S(I1

>0× I2
>0) with the

lattice V(I1
>0× I2

>0) of finite antichains in I1
>0× I2

>0 via the mutually inverse lat-
tice isomorphisms S 7→max(S) and T 7→↓ T .

Let L be a bounded modular lattice. Given bounded lattice homomor-
phisms F : I1→ L and G : I2 → L, define f : V(I1

>0× I2
>0)→ L by

{(i0, j0), . . . ,(im, jm)} 7→ (Fi0 ∧Gi0)∨·· ·∨ (Fim ∧Gim).

When I1 and I2 are finite, a theorem of Birkhoff [1, Ch. III.7, Theorem 9] pro-
vides that f is a bounded lattice homomorphism extending F and G. More-
over, any such map is uniquely determined by its values on elements of form
{(i, j)}= {(i,1)}∧{(1, j)}, hence by F and G. When I1 and I2 are infinite, every
pair of finite antichains lies in a finite bounded sublattice of form V(Î1

>0, Î
2
>0)

for some Îm ⊆ Im, so f preserves meets and joins. Uniqueness is clear.

2.3 Coproducts in CD

Theorem 7. Suppose that P is an A-indexed family of nonempty posets. Let Q=∏A P,
and let λ α :A(Pα)→A(Q) be the canonical filtration ofA(Q) byA(Pα). Then the pair
(A(Q),{λ α : α ∈ A}) is a coproduct of the indexed family (A(Pα))α∈I in the category
of complete, completely distributive lattices and complete lattice homomorphisms.

Proof. Put X =
⋃

α λ α(Pα), and let Sα = S∩λ α(Pα) for each S⊆X . Fix a complete,
completely distributive lattice L, and for each α ∈ A let fα : A(Pα)→ L be a
complete lattice homomorphism. Since λ α(Pα)∩λ β (Pβ ) = /0 when α 6= β , there
is a unique map f : X → L such that

f λ
α = fα

for each α ∈ T .
Posit S,T ⊆ X such that

∧
S ≤

∨
T . We claim there exists α ∈ A such that∧

Sα ≤
∨

Tα . Otherwise there exists, for each β ∈ T , an element sβ ∈ (
∧

Sβ )−
(
∨

Tβ ). Arranging these elements into an A indexed family yields (sβ )β∈A ∈
(
∧

S)− (
∨

T ), a contradiction. Thus∧
f (S) =

∧
α∈A

∧
f (Sα)≤

∨
α∈A

∨
f (Tα) =

∨
f (T ).

Therefore f has a unique extension to A(Q), by Theorem 1.

When J is a complete totally ordered lattice with completely dense irre-
ducibles the canonical filtration J→A(J(J)) is a lattice isomorphism, which we
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will call the canonical isomorphism. Corollary 8 is the special case of Theorem 7
obtained by identifying Iα with A(J(Jα)) under this isomorphism. We state
this case explicitly as it holds special significance to the study of homological
persistence.

Corollary 8 (Chains and dense irreducibles). Let I be an A-indexed family of com-
plete totally ordered lattices with completely dense irreducibles, and let α ∈ A be given.
Let Q = ∏α∈A J(Iα) and let λ α : Iα → A(Q) be the canonical filtration of A(Q) by
Iα . Then the pair (A(Q),{λ α : α ∈ A}) is a coproduct of the indexed family of totally
ordered sets I in the category of complete, completely distributive lattices and complete
lattice homomorphisms.

Corollary 9 may be viewed as the special case of Corollary 8 where the
totally ordered set J(Iα) has completely dense irreducibles, for each α . In this
case all objects are free.

Corollary 9 (Free objects). Let I be an A-indexed family of complete totally ordered
lattices with completely dense irreducibles. Then diagram (1) commutes for each α ∈A,
where (i) λ α is the canonical filtration A(Iα)→A(∏α∈A Iα), (ii) ηα(S) = {S∪T : S ∈
S, T ⊆

⋃
β 6=α J(Iβ ), (iii) Pred( j) :=↓ pred( j), (iv) φ α is the isomorphism induced by

the canonical identification Iα ≡ A(J(Iα)), (iv) ψ is the isomorphism induced by the
evident identification A(

⋃
α∈A J(Iα)) ≡ ∏α∈AA(J(Iα)), and (vi) µ0 and µ1 are the

canonical injections described in Theorem 3.

A(Iα)
λ α

//

∼=φα

��

A(∏α∈A Iα)

∼=ψ

��

J(Iα)

µ0

vvmmm
mmm

mmm
mmm

m
µ1

))SSS
SSSS

SSSS
SSSS

Pred
hhQQQQQQQQQQQQQQ

A2(J(Iα))
ηα

// A2(
⋃

α∈A J(Iα))

(1)

Consequently, (i) the objects in (1) are free, specifically with respect to the forgetful
functor to the category of posets and order preserving functions, and (ii) the pairs
(A(∏α∈A Iα),{λ α : α ∈ A}) and (A2(

⋃
α∈A J(Iα)),{λ α : α ∈ A}) are coproducts in

the category of complete, completely distrubitive lattices, and complete lattice homo-
morphisms.

2.4 Coproducts in MA

Let L be a complete modular algebraic lattice and let I1, . . . ,IN be an indexed
family of complete totally ordered lattices with completely dense join irre-
ducibles.

Theorem 10. A bounded lattice homomorphism f : S(∏α∈{1,...,N} Iα
>0)→ L extends

to a complete lattice homomorphism g : A(∏α∈{1,...,N} J(Iα))→ L if and only if f pre-
serves existing meets and joins.
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Proof. In one direction, if f extends to a complete lattice homomorphism then it
preserves existing meets and joins. The converse follows from Theorem 33.

Theorem 11. Let f 1 : I1 → L and f 2 : I2 → L be complete lattice homomorphisms,
and let f : S(I1

>0× I2
>0)→ L be the bounded modular copairing of f 1 and f 2 relative

to the canonical coprojections on S(I1
>0× I2

>0). The following are equivalent.

1. One has ∧
b∈B

( fa∨ fb) = fa∨
∧
b∈B

fb

for each a ∈ I1∪ I2 and each subset B of either I1 or I2.
2. Map f preserves existing meets and joins.
3. Map f extends to a complete lattice homomorphism A(J(I1)×J(I2))→ L.

Proof. Equivalence of 2 and 3 is the content of Theorem 10. Condition 2 clearly
implies 1, and the converse follows from Lemma 29.

Theorem 12. If I1, I2 are complete totally ordered sublattices of a modular algebraic
lattice L, then I1∪ I2 extends to a complete, completely distributive sublattice iff∧

b∈B

(a∨b) = a∨
∧
b∈B

b

for each element a ∈ I1∪ I2 and each set B contained in I1 or in I2.

Proof. Every complete chain in an algebraic lattice has completely dense irre-
ducibles. Apply Theorem 11 to the inclusions f 1 : I1→ L and f 2 : I2→ L.

Remark 2. Theorem 12 fails when the condition that I1 and I2 be complete sublattices
is dropped. It is simple to construct a counterexample, for instance, when every element
of I1 has finite height but I1 is countably infinite.

Theorem 13. The following are equivalent for any pair of totally ordered sets I1, I2.

1. Sets I1 and I2 are well ordered.
2. Sets I1 and I2 have a completely distributive coproduct in MA.
3. The map S(I1× I2)→ A(J(I1)×J(I2)) defined S 7→ S∩J(I1)×J(I2) is an iso-

morphism, and the cospan of canonical filtrations I1−→A(J(I1)×J(I2))←− I2

is a coproduct in MA.

Proof. Follows directly from Theorems 11 and 28.

Remark 3. The results of this section extend strictly beyond what can be deduced from
the structure of free lattices. For example, J = (R∪{∞,−∞})×{−,+} is a complete
totally ordered lattice, and is not free with respect to the forgetful functor into partially
ordered sets. This can be verified via Tunnicliffe (1985) Theorem 3, noting that J(J)∩
J∗(J) = /0 fails to generate J. Nevertheless, J has completely dense irreducibles, and
Theorem 10 applies.
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2.5 Coproducts in UD

Theorem 14. Let I1, . . . ,IN be well ordered sets with maxima. Let Q = ∏m J(Im), and
for each m let λ m : Im→ A(Q) be the canonical filtration of A(Q) by A(J(Im)). Then
the pair (A(Q),{λ m : m≤ N}) is a coproduct of the indexed family I in

1. the category of complete distributive upper continuous lattices and (co)limit pre-
serving lattice homomorphisms.

2. the category of bounded distributive lattices and bounded lattice homomorphisms

Proof. Claim 2 holds a fortiori by Theorem 5, Lemma ??, and Theorem 28. For
claim 1, let L be any complete distributive upper continuous lattice. It suffices
to show that the unique map f : A(Q)→ L induced by a family of complete
lattice homomorphisms f α : Iα → L is also complete. Preservation of meets
holds trivially by Theorems 28 and 29, noting that every element of Im is meet
irreducible. Preservation of joins holds by Theorem 29 and upper continuity.

3 Technical results

The content of this section relates closely to well known results on distribu-
tive lattices and representations, for example, vis-a-vis canonical extensions
and Stone-Priestly duality [2, 4]. We would be a little surprised if any portions
were substantially novel, but as we have been unable to find a reference, we
supply independent arguments. Much of this work can be organized, concep-
tually, around the following unifying goal: given a lattice K with completely
dense irreducibles, construct an explicit embedding from K to a doubly alge-
braic lattice L. This embedding is not a canonical extension, in general, for it is
an easy exercise, in what follows, to construct an example where the finiteness
condition of [2, Theorems 2.3 and 2.6] is violated, even when the associated
lattices are totally ordered.

3.1 Conventions

An element j is completely join irreducible if
∨

S = j implies j ∈ S. In this case the
strict lower bounds of j contain a unique greatest element, denoted pred( j) :=∨
↓̊( j).

A lattice L has completely dense join irreducibles if each element of L can be
expressed as the join of a (possibly empty, possibly infinite) set of completely
join irreducibles. It has completely dense meet irreducibles if the dual lattice L∗
has completely dense join irreducibles, and completely dense irreducibles if it has
completely dense join and meet irreducibles. A complete filtration F : I→L has
completely dense irreducibles if the complete chain F(I) = {Fi : i ∈ I} has dense
irreducibles.
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j = g∗( j∗)

j∗ = g( j)

1

1

2

2

3

3

4

4

5

5

Figure 1: The canonical matching of a completely join irreducible element j =↓
(3,3) with a completely meet irreducible element j∗ = b(2,2)c= I2− ↑ (3,3) in a
distributive lattice L =A({1, . . . ,5}2) with completely dense irreducibles. Since
pred( j) = j∧ j∗ and succ( j∗) = j∨ j∗, one has g∗( j∗) = j and g( j) = j∗.

3.2 Irreducible matchings and lattice extensions

Example 1 and its associated Figure 1 may aid intuition in parsing Proposition
15. We refer to the maps g and g∗ defined in this context as the irreducible
matchings of L.

Proposition 15. Let L be a bounded lattice with completely dense irreducbiles. For
each j ∈ J(L) and each j∗ ∈ J∗(L) there exists exactly one g( j)∈ J∗(L) and one g∗( j∗)
such that

g( j)∧ j = pred( j) g∗( j∗)∨ j∗ = succ( j∗).

The maps g and g∗ determine mutually inverse bijections between J(L) and J∗(L).

Proof. Let j ∈ J(L) be given. Density of meet irreducibles implies that the set
difference S = J∗(L)≥pred( j) − J∗(L)≥ j is nonempty. Fix j∗ ∈ S and note that
pred( j) ≤ j ∧ j∗ ≤ pred( j), hence j ∧ j∗ = pred( j). For any s ∈ S one has s ≥
pred( j) =

∧
(J∗(L)≥ j ∪{ j∗}), so irreducibility implies s = j∗. Therefore g is well

and uniquely defined, as is g∗, by duality. Since succ(g( j)) is the unique element
of L at height 1 above g( j), the following diamond isomorphism confirms that
g∗ and g are mutually inverse.

succ(g( j))

j g( j)

pred( j)
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Lemma 16. Let S be any join-dense subset of a lattice L, and let a = (aβ )β∈B be any
indexed family of elements in L. The following are equivalent.

1. Meet
∧

a exists.
2. Join

∨
(
⋂

β∈B S≤aβ ) exists.
3. Both exist, and

∧
a =

∨
(
⋂

β∈B S≤aβ ).

Remark 4. It is worth noting that the following applies to all lattices with completely
dense irreducibles, including lattices that are not complete. Maps ζ and ζ ∗ extend
naturally to set functions between power set lattices P(J(L)) and P(J∗(L)∗). Under
these extensions, it is simple to check that ζ ζ ∗ is the closure operator on P(J(L))
sending S to ↓ S. A dual characterization holds for ζ ∗ζ .

Remark 5. The following maps have an interesting parallel in the notion of cones and
dual cones.

Proposition 17. Let L be a bounded distributive lattice with completely dense irre-
ducibles, and let g and g∗ denote the associated matchings.

1. Lattice L has a compact base, and an element is compact iff it is a join of finitely
many completely join irreducibles.

2. Lattice L has a cocompact cobase, and an element is cocompact iff it is a meet of
finitely many completely meet irreducibles.

3. There is a commutative diagram

L L∗

AJ(L) AJ(L∗)

ξ

=

ξ ∗
ζ

ζ ∗

where

(a) Each arrow is injective.
(b) Vertical arrows preserve existing meets and joins, and horizontal arrows

reverse existing meets and joins.
(c) By definition, ξ (a) = J(L)≤a and ξ ∗(a) = J(L∗)≤a. Also by definition,

ζ (S) = g(J(L)−S) = { j∗ ∈ J∗(L) : j ≤ j∗ for all j ∈ S}
ζ
∗(S) = g∗(J∗(L)−S) = { j ∈ J(L) : j ≤ j∗ for all j∗ ∈ S∗}.

Proof. Fix j∗ ∈ J∗(L) and set j = g( j∗). We claim that j = minJ(L)� j∗ . To
see this, fix j′ ∈ J(L) such that j∗ ∨ j′ > j∗ and j′ � j. Then by distributivity
j∗ ∨ ( j∧ j′) = ( j∗ ∨ j)∧ ( j∗ ∧ j′) ≥ succ( j∗). Since j∧ j∗ is a join of completely
join irreducibles, there exists a completely join irreducible j′′ such that j′′ < j
and j∗ ∨ j′′ = succ( j∗). But only one completely join irreducbile that satisfies
the latter identity, by Proposition 15, and this is g( j∗) = j. Thus we have a
contradiction, and the claim follows.

Consequently, one has J(L)≤ j∗ = J(L)� j. Since every down-closed subset
S ⊆ J(L) ca be expressed as the set complement of a family of sets of form
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J(L)� j, eg, by letting j run over all elements not contained in S, it follows that
the set complement of every down-closed subset S⊆ J(L) is an up-closed sub-
set of form g∗(T ) ⊆ J(L), in particular T = g(J∗(L)− S). Thus ζ and ζ ∗ are
mutually inverse antiisomorphisms, and the diagram commutes.

Maps ξ and ξ ∗ preserves existing meets by Lemma 16. Thus they preserve
existing joins, by commutativity. All maps are clearly injective, so this com-
pletes the proof of all claims relating to the diagram.

For claim 1, note that 4 implies the join irreducible elements of L are com-
pact. So, too are finite joins of these elements. An element that cannot be
expressed as a finite join of completely join irreducibles can nevertheless be ex-
pressed as an infinite one, and therefore fails to be compact. Claim 1 follows.
Claim 2 is dual.

Example 1. Suppose that I = {1, . . . ,N} for some positive integer N. Then I2 has
completely dense irreducibles,

J(I2) = {↓ (m,n) : m,n ∈ I} J∗(I2) = {I2− ↑ (m,n) : m,n ∈ I}

and

g(↓ (m×n)) = I2− ↑ (m,n) g∗(I2− ↓ (m×n)) =↓ (m×n).

See Figure 1 for illustration.

3.3 Semitopologies on chain products

Let Cov(P) denote the covering relation on P, that is, the family of ordered pairs
(p,q) such that q covers p in P. A cut of P is an ordered pair c = (c•,c•) such
that (i) c• is down-closed, (ii) c• is up-closed, (iii) c•∩c• = /0, and (iv) c•∪c• = P.

Lemma 18. For any totally ordered set I, one has

J(I) = {b : (a,b) ∈ Cov(I)} J∗(I) = {a : (a,b) ∈ Cov(I)}.

Proof. An element is completely join irreducible iff it covers exactly one el-
ement, and completely meet irreducible iff it is covered by exactly one ele-
ment.

Corollary 19. The following are equivalent for any totally ordered set I.

1. Lattice I has a compact base.
2. Lattice I has completely dense join irreducibles.
3. Lattice I has completely dense meet irreducibles.
4. Each i ∈ I may be expressed in form∨

(b : (a,b) ∈ c•) =
∧
(a : (a,b) ∈ c•)

for some cut c of Cov(I).
5. For any a,b ∈ I, one has a < b iff a≤ a′lb′ ≤ b for some a′,b′ ∈ I.

12



Proof. All directions follow from Lemma 18.

Let I = (Iα)α∈A be an indexed family of bounded totally ordered sets. Let
Jα be the family of completely join irreducible elements in Iα , and assume that
every element of Iα can be expressed as a join of elements in Jα . Likewise, let
Mα be the family of completely meed irreducible elements of Iα . By Corollary
19, set Mα is meet dense in Iα . Put

H = ∏α Iα
>0 Q = ∏J

Lemma 20 (Finite expressibility). Suppose that index set A is finite. Then to every
X ∈ S(H) correspond finite subsets S,T ⊆∏α S(Iα) such that such that X = dSe= bTc.

Proof. Existence of S holds by definition. With regard to T , fix a suitable S and
observe that, also by definition, X = dSe =

∨
s∈S

∧
α∈A λ α(sα). By complete dis-

tributivity of the power set lattice, therefore, X =
∧
{
∨

s∈S λ αs(sαs) : αs ∈ A ∀ s ∈
S}. The desired conclusion follows, since each term

∨
s∈S λ αs(sαs) can be real-

ized in form btc for some t ∈∏α S(Iα).

Proposition 21. Let S ∈ S(H) be given. The following are equivalent.

1. Element S is completely join irreducible in S(H).
2. Index set A is finite, and S =↓ ( j) for some j ∈∏J.

Proof. Suppose S is completely join irreducible. If S contains no maximum ele-
ment, then every element of T = {↓ (i) : i ∈ S} is a strict lower bound of S, and∨

T = S, a contradiction. Therefore S contains a unique maximum, j, and it is
elementary to argue that jα is completely join irreducible for each α ∈ A. For
each α ∈ A define k(α) ∈∏I by

k(α)β =

{
jβ α 6= β

pred( jβ ) α = β .

Then S−{ j} =↓H K, where K is the antichain {k(α) : α ∈ S}. If A is infinite
then K is infinite, and it is simple to argue that ↓H K /∈ S(H), whence

∨
α∈A ↓H

k(α) = S a contradiction. Therefore A is finite. This establishes one direction.
Conversely, suppose 2. One can define K as before, and it is simple to show
pred(S) =↓H K.

Corollary 22. If index set A is infinite then J(S(H)) is empty.

Lemma 23. Suppose that index set A is finite, and fix i ∈H and S ∈ S(H). Then i ∈ S
if and only if (∏J)≤i ⊆ S.

Proof. One direction is clear. For the converse, suppose that (∏J)≤i ⊆ S. We
must show that i∈ S. Let T =max(S), so that S =↓ (T ), and assume, without loss
of generality, that A = {1, . . . ,N}. We claim that for each M ≤N there exists a k ∈
S such that km = im for all 1≤m≤M. The proof proceeds by induction on M. The
base case M = 0 holds because iα > 0 for all α , and each Iα has completely dense
join irreducibles, whence (∏J)≤i and therefore S is nonempty. The inductive
step follows from density of irreducibles and the fact that T is finite.

13



Proposition 24. Suppose that index set A is finite.

1. Lattice S(H) has completely dense irreducibles, and

J(S(H)) = {d je : j ∈∏J} J∗(S(H)) = {b j∗c : j∗ ∈∏M}.

2. The injective lattice homomorphism S(H) → A(∏J), S 7→ S∩∏J preserves
existing meets and joins. This map restricts to a poset isomorphism between the
completely join irreducible elements of its domain and codomain, respectively.

3. Let g and g∗ denote the irreducible matchings defined in Lemma 15). Put φ(i) =
H≤i and φ ∗(i) = H�i for each i ∈∏I. Then the following diagram commutes

∏J

JS(H) J∗S(H)

φ φ∗

g

g∗

Proof. Density and characterization of completely join irreducibles were estab-
lished in Proposition 21 and Lemma 23. For density and characterization of
completely meet irreducibles, fix j ∈ ∏J and let j∗ ∈ ∏M be the unique ele-
ment such that j∗α l j for all α ∈ A. If

S = H− ↑ j = b j∗c.

then S is the maximum element S(H) such that ↓ j � S. Since, in addition,
(∏J)≤b j∗c = ∏J− ↑ j, Lemma 16 implies that every element of S(H) can be
expressed as a meet of elements in {b j∗c : j∗ ∈∏M}. Moreover, since b j∗c has
a least strict upper bound in S(H), namely b j∗c ∪ { j}, all such elements are
completely meet irreducible. This completes the proof of claims 1 and 3. Claim
3 follows immediately from 1 and Proposition 17.

3.4 Semitopologies on products of well ordered sets

Let us reinstate the notation of §3.3.
For any family of partially ordered sets (Pα)α∈A, define F(P) to be the bounded

sublatice of A(∏I) generated by the images of all canonical filtrations A(Pα)→
∏P. Write S(H)∼A(Q) iff the map S(H)→A(Q), S 7→ S∩Q is an isomorphism.

Lemma 25. The following are equivalent.

1. S(H)∼ A(Q)
2. A(Q) = F(J)

Lemma 26. If A = {1, . . . ,N} is finite and Im is well ordered for each m ≤ N, then
every element of S(H) can be expressed in form S(H)− ↑U for some finite set U ⊆ Q.

Proof. Let S∈ S(H) be given and assume. Then by Lemma 20 there exists a finite
antichain T ⊆∏I such that S= bTc. Without loss of generality, tm < 1 for all t ∈ T
and all m≤ N, for otherwise btc= S(H). Thus min(H−btc) = (succ(tm))m≤N ∈ Q
for each t ∈ T . One may take U = {min(H−btc : t ∈ T}.

14



Lemma 27. Suppose that A = {1, . . . ,N} and Im is well ordered for each m ≤ N. If
A(Q) = F(J), then every nonempty chain C ⊆ A(Q) contains a minimum element.

Proof. Since F(J) is complete by hypothesis T :=
⋂

C ∈ F(J), and Lemma 26
provides a finite set U such that T = Q− ↑ U . If a set S contains T , then the
containment is strict iff S contains at least one element of U . Since U is finite,
there exists S ∈C that contains no element of U . One then has S =

⋂
C = minC.

Theorem 28. If A = {1, . . . ,N} is finite and Im is well ordered for each m ≤ N, then
A(Q) = F(J).

Proof. We proceed by induction on N. The base case N = 1 is clear. For conve-
nience put QM = ∏m≤M J(IM) and let JM = (J1, . . . ,JM).

Let S ∈ A(Q) be given. One has a decreasing function

f : IN → A(QN−1) iN 7→ {i ∈ QN−1 : (i, iN) ∈ S}.

By the inductive hypothesis A(QN−1) = F(JN−1). Therefore set C = { fi : i ∈ IN}
inherits a well order ≤ from A(QN−1), via Lemma 27. It likewise inherits a well
order � from IN . As ≤ and � are opposites, C must be finite. Since S is a union
of products X×Y , where X ∈C and Y is a lower set of IN , it follows that S∈F(J).
Thus A(Q) = F(J), which was to be shown.

3.5 Irreducible criterion for continuity

Let us reinstate the notation of §3.3.
Since fd je =

∧
α f (λ α

jα ) and fb jc =
∨

α f (λ α
jα ), Theorem 29 can be roughly in-

terpreted to say that f preserves joins iff, in lattice L, certain infinite joins com-
mute with coordinate-wise meets. The corresponding statement for preserva-
tion of meets is dual. As a mnemonic device, these statements can be compared
to the Schwartz theorem of multivariable calculus, which states that the partial
derivatives of any twice-continuously differentiable function Rn→R commute.

Theorem 29. Suppose that index set A is finite, and let f : S(H)→ L be a bounded
lattice homomorphism. Then f preserves existing joins iff∨

j∈J(i)

fd je = fi

for all i ∈∏I, where by definition J(i) = ∏α Jα
≤iα . Dually, f preserves existing meets

iff ∧
j∈J∗(i)

fb jc = fi

for all i ∈∏I, where by definition J∗(i) = ∏α Mα
≥iα .

Proof. Combine Lemma 2 with Proposition 24 for joins. Meets are dual.
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Remark 6. It is often convenient to apply Theorem 29 in a trivially equivalent form:
map f preserves existing joins iff

∨
j∈J(i,α) fd je = fi for all i ∈∏I, where by definition

J(i,α) is the set of all j such that jα ∈ Jα
≤iα and jβ = iβ for all β 6= α . The correspond-

ing statement for meets is dual.

The following result is not strictly required for the proof of our main results,
but it speaks to the role of dense irreducibles in regimes where a compact base
is unavailable. We say that e preserves existing monotone meets if e(

∧
C) =

∧
e(C)

for every unbounded chain C ⊆ S(I>0×J>0) such that
∨

C exists. It preserves
existing monotone joins if the induced map e : S(I>0×J>0)

∗ → L∗ preserves
existing monotone meets.

Proposition 30. For any lattice homomorphism f : S(I>0×J>0)→ L, the following
are equivalent.

1. Map f preserves existing meets and joins.
2. Map f preserves existing monotone meets and joins.

If every complete linear sublattice of L has dense irreducibles, then these conditions are
equivalent to

3. For every complete chain C ⊆H and every i ∈C,∧
{a : (a,b) ∈ Cov( f (C)), i≤ a}= f (i) =

∨
{b : (a,b) ∈ Cov( f (C)), b≤ i}.

Proof. Equivalence of 1 and 2 follows from Lemma 29 and Remark 6. For
3, suppose every complete linear sublattice of L has completely dense irre-
ducibles, and fix a complete chain C ⊆ S(I>0×J>0). If 2 holds then f (C) is
a complete chain in L, hence has completely dense irreducibles. Since every
linear sublattice of S(I>0×J>0) has dense irreducibles (a consequence of the
fact that S(I>0×J>0) embeds into a powerset lattice), condition 3 follows from
Lemma 18. A similar argument yields the converse.

4 Proof of Theorem 10

Let L be a complete modular algebraic lattice, and I1, . . . ,IN be complete totally
ordered sets with completely dense join irreducibles. Let f : ∏α Iα

>0 → L be a
lattice homomorphism that preserves existing meets and joins. Extend f to a
function A(∏α J(Iα))→ L via

f (Z) =
∨
S∈S

f (S) (2)

where S = {S ∈ S(∏α J(Iα)) : S≤ Z}.

Remark 7. It is important to recall that S(P) is the bounded sublattice of A(P)
generated by all sets of form ↓ p. Therefore its elements include both the empty set and
P.
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Lemma 31. The following are equivalent.

1. Map f is a complete lattice homomorphism.
2. For each compact a∈L, the collection of all Z ∈A(∏α J(Iα)) such that a≤ f (Z)

contains a unique minimum element.

Proof. Under condition 1, the unique minimum Z such that a ≤ f (Z) can be
computed as the meet of all Z′ with this property, since f preserves arbitrary
meets. Conversely, assume 2, and fix S ⊆ A(∏α J(Iα)). Let a be a compact
element of L, and Z be the minimum element ofA(∏α J(Iα)) such that a≤ f (Z).
Then

a≤
∧

S∈S f (S) ⇐⇒ Z ⊆ S ∀ S ∈ S ⇐⇒ Z ⊆
∧

S∈S S ⇐⇒ a≤ f (
∧

S∈S S).

Since a is arbitrary, it follows that f (
∧

S∈S S) =
∧

S∈S f (S). Thus f preserves arbi-
trary meets. It preserves arbitrary joins by fiat. Therefore f is complete, which
was to be shown.

Lemma 32. Let a be a compact element of L, and fix Z ⊆∏α J(Iα). The following are
equivalent.

1. Set Z is the minimum element of A(∏α J(Iα)) such that a≤ f (Z).
2. Set Z is the minimum element of S(∏α J(Iα)) such that a≤ f (Z).

Proof. Posit condition 1. Then set Z can be expressed in form
⋃

p∈P ↓ p for some
subset P ⊆ ∏α J(Iα). By compactness there exists a finite subset Q ⊆ P such
that a≤ f (

⋃
q∈Q ↓ q). By minimality one must have Z =

⋃
q∈Q ↓ q ∈ S(∏α J(Iα)).

Condition 1 follows.
Now posit condition 2. Assume, for a contradiction, that there exists Z′ ∈

A(∏α J(Iα)) such that a ≤ f (Z′) and Z � Z′. Without loss of generality, Z′ < Z.
By an argument similar to that of condition 1, there exists Z′′ ≤ Z′ such that
Z′′ ∈ S(∏α J(Iα)) and a≤ f (Z′′). This yields the desired contradiction.

Theorem 33. Map f extends to a complete lattice homomorphism A(∏α J(Iα))→ L.

Proof. We proceed by induction on N. The base case N = 1 is clear. Assume
the desired conclusion holds for all integers strictly less than N. In particular,
for any proper subset of {1, . . . ,N}, the extended map f restricts to a complete
lattice homomorphism A(∏α∈A J(Iα))→ L under the canonical embedding of
A(∏α∈A J(Iα)) in A(∏α≤N J(Iα)). Without risk of ambiguity, write f (S) for the
value of f on S ∈ A(∏α∈A J(Iα)) under this embedding.

For convenience, let

X = ∏α<NJ(Iα) Y = J(IN)

Let Y ∈ A(Y) be given. The map

g : S(∏α<N Iα
>0)→ [ f N(i),1] X 7→ f (X)∨ f (Y )

17



preserves existing meets and joins because S(∏α<N Iα
>0) is completely distribu-

tive and f preserves existing meets and joins. Therefore it extends to a com-
plete lattice homomorphism on A(∏α<N Iα), by the inductive hypothesis.

Fix a compact a ∈ L, and note, vacuously, that a∨ f (Y ) ∈ [ f (Y ),1]. Thus
there exists a minimum element Z ∈ A(∏α<N J(Iα)) such that a∨ f (Y ) ≤ g(Z),
or equivalently, such that

a≤ g(Z) =
∨

X∈B

f (X)∨ f (Y )

where B is the family of all subsets of Z that lie in S(∏α<N J(Iα)) = S(X). Since
a is compact, there exists a finite subset B′ ⊆ B such that a≤

∨
X∈B′ f (X)∨ f (Y ).

Since Z =
⋃

B is minimal, it follows that Z =
⋃

B′ ∈ S(X).
Thus there exists a map ξ : S(Y)→ S(X) such that

ξ (Y ) = min{X ∈ S(X) : a≤ f (X)∨ f (Y )}.

In fact we have constructed values for ξ given any Y ∈ A(Y), and we will use
this fact later, but for the moment the symmetry of notation is convenient. By
Lemma X there exists an opposing map ξ ∗ : S(X)→ S(Y) such that

ξ
∗(X) = min{Y ∈ S(Y) : a≤ f (X)∨ f (Y )}.

It is elementary to check that ξ ∗ξ and ξ ξ ∗ are closure operators, and that ξ and
ξ ∗ determine mutually inverse order reversing bijections between cl(S(Y)) =
{ξ ∗(X) : X ∈ S(X)} and cl(S(X)) = {ξ (Y ) : Y ∈ S(Y)}.

Now fix Y,Y ′ ∈ cl(S(Y)) such that Y < Y ′. Since ξ is an order-reversing
bijection, one has ξ (Y ′) < ξ (Y ) and therefore ξ (Y ′) ≤ pred(ξ (Y )). Thus Y ′ ≥
ξ ∗(pred(ξ (Y ))). Since Y ′ was an arbitrary lower bound of Y , it follows that
ξ ∗(pred(ξ (Y ))) is the least nontrivial successor to Y in cl(S(Y)). Every element
of cl(S(Y)) with a nontrivial successor has a least nontrivial successor, similarly.

For each integer m < M := |cl(S(Y))|, let Ym denote the unique element of
cl(S(Y)) at height m over the bottom element /0 ∈ cl(S(Y)), and let Xm = ξ (Ym).

First suppose that M is the countably infinite cardinal, and put YM =
∨

m<M Ym.
Since the sequence Ym is strictly increasing, YM is not join irreducible. Therefore
YM > ξ ∗(ξ (YM)) =: Y∗ ∈ cl(S(Y)). Thus Ym <Y∗ for all but finitely many m. How-
ever, for any finite m such that Ym < Y∗ < YM

ξ (YM)< ξ (Ym)< ξ (Y∗) = ξ (YM),

a contradiction. Therefore M is finite.
Now suppose that M if finite. Setting YM = Y, put

Zm = (Xm×Y)∪ (X×Ym) Z =
⋂

m<M

Zm =
⋃

m<M

Xm×Ym+1.

By construction of Xm = ξ (Ym), one has

a≤
∧

m<M( f (Xm)∨ f (Ym)) =
∧

m<M f (Zm) = f (Z).
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By Lemma 31, it suffices to prove that Z is the minimum element ofA(∏α J(Iα))
such that a ≤ f (Z). By Lemma 32, it therefore suffices to prove that Z is the
minimum element of S(∏α J(Iα)) such that a≤ f (Z).

Therefore suppose, for a contradiction, that Z′ ∈ S(∏α J(Iα)) satisfies both
a ≤ f (Z′) and Z′ � Z. Without loss of generality, Z′ < Z. Fix (x,y) ∈ Z−Z′, and
put X∗ = {x′ : (x′,y) ∈ Z′}.

By hypothesis, Z′ can be expressed as a finite union
⋃L

α=1 ↓ (x′α ,y′α). For each
index α , either yα < y or xα ∈ X∗. Thus, taking Y∗ =

∨
{↓ yα : yα < y} ∈ S(Y), one

has

Z′ ⊆ (X∗×Y)∪ (X×Y∗) := Z′′.

Fix m such that Ym = ξ ∗(ξ (Y∗)) ≤ Y∗ and therefore ξ (Ym) = ξ (Y∗). One then
has a ≤ f (Z′) ≤ f (Z′′) = f (X∗)∨ f (Y∗). It follows from the definition of ξ that
ξ (Y∗)⊆ X∗. Since x /∈ X∗, therefore,

x /∈ ξ (Y∗) = ξ (Ym) = Xm.

Since y /∈ Y∗ one has, a fortiori, that y /∈ Ym. Therefore (x,y) /∈ Zm, hence (x,y) /∈ Z,
a contradiction. The desired conclusion follows.
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