
Decomposition of nonlinear persistence modules

Gregory Henselman-Petrusek
Robert Ghrist

December 22, 2019

Abstract
Single parameter persistence is a fundamental notion in applied algebraic topol-

ogy. However, the problem of adapting a persistence framework to nonlinear coef-
ficients remains largely open. Recently, Patel has proposed a notion of persistence
diagram compatible constructible modules valued in abelian and Krull-Schmidt
categories. We introduce a corresponding decomposition scheme by reformatting
the language of classical persistence into that of projective Puppe exact categories.
This construction provides a concrete basis on which to analyze the Patelian per-
sistence diagram via standard machinery of homological algebra.

1 Introduction
Over the course of the past several decades, considerable effort has been devoted
to problems of the following form: given a field k and a nested sequence of topo-
logical spaces X0 ⊆ ·· · ⊆ XN , what can be deduced of X from the sequence V of
vector spaces and linear maps

H∗(X0;k)→ ··· → H∗(XN ; k)

induced by homology?
In 2002, Edelsbrunner, Letscher, and Zomorodian [8] described an approach

that predicates on the notion of a persistence diagram. The persistence diagram
was later reformulated as a barcode, which may be regarded as a set function
b : I= {{n, . . . ,m} : 0≤ n≤ m≤ N}→ Z≥0 determined by V . This approach has
significant computational advantages, as the function b is efficiently vectorizable,
simple to store in computer memory, and compatible with learning algorithms.
However, the information encoded in a barcode is highly incomplete. To wit, it
retains no data regarding the relation of X to another topological space.

A positive step to fill this gap was taken by Carlsson and Zomorodian in 2005
[22], who introduced a novel definition of barcode in relation to a generalization
of the following result by Gabriel. Here an interval diagram means a sequence
of linear maps U0 → ··· → UN such that (i) Um ∈ {0,k} for all m, (ii) Um = k

whenever there exist n ≤ m ≤ l such that Un = Ul = k, and (iii) all maps have
maximum rank.

Theorem 1 (Gabriel). Let I be the chain {0, . . . ,N}, endowed with the usual order,
and let E be the category of finite dimensional vector spaces over a ground field k,
and linear maps betweeen them.
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1. Every I-shaped diagram in E is isomorphic to a direct sum of interval dia-
grams.

2. If (Vm)
k
m=0 and (Wn)

l
n=0 are indexed families of interval diagrams, then

⊕V ∼= ⊕W if and only if k = l and there exists a permutation on {0, . . . ,k}
such that Vm ∼=Wπ(m) for all m.

The barcode defined by Carlsson and Zomorodian is the function b : I→ Z≥0
such that b(I) is the number of summands supported on I in any such decomposi-
tion of V , and coincides (up to a simple reformulation) with that of Edelsbrunner
et al. The contribution of this definition was to relate the persistence diagram to an
algebraic structure which could be investigated using the machinery of homologi-
cal algebra. In particular, by relating b to a decomposition of V , it became possible
to query individual bars as they relate to maps Y → Xm and Xm→ Z.

However, the barcode paradigm, too, yields incomplete data as concerns X .
The theorem of Gabriel, and its many generalizations, deals almost exclusively
with linear coefficients. Moreover, as with many results of a Krull-Schmit variety,
the decomposition of V into direct summands is not canonical. This complicates
both formal interpretation and general efforts at integration with natural category
theoretic machinery.

Recently, Patel has introduced several notions of barcode applicable to homol-
ogy with nonlinear coefficients [15]. On a base level, these notions mirror the
original definitions of Edelsbrunner, Letscher, Zomorodian, and Robbins, and de-
rives from the application of a Möbius transform to the rank function of a module.
As such, it shares several of the same analytical limitations.

The present work proposes a remedy to this problem analogous to that posed
by Carlsson and Zomorodian for linear modules. Concretely, we show that the
barcode introduced by Patel “counts” the components of V with respect to a cer-
tain decomposition scheme, just as the original barcode counts bars in a direct
sum decomposition. This scheme is both canonical and natural with respect to
some classical constructions in algebraic topology, e.g. the Leray-Serre spectral
sequence. Moreover, it admits natural extensions of the original definition of Patel
in several directions, removing, for example, the criterion of constructibility.

Our main result appears in Theorem 21. Literature and notation are reviewed
in §2 and §3, respectively. Our approach is based on the projective theory of
Puppe exact categories, recalled in §6. This theory relies on the structure of free
objects in the category of complete, completely distributive lattices and complete
lattice homomorphisms, developed in separate work [12] and reviewed in §4. The
importance of this machinery in dealing with certain limit arguments is illustrated
by example in §5. The principle objects of study, homomorphisms K f and K∗f , are
introduced in §7. Main results appear in §8.

For readers unaccustomed to certain categories of modular, algebraic, and com-
pletely distributive lattices, this treatment may appear slightly terse. A gradual
introduction to the main ideas may be found in Appendix A. Some details of con-
tinuous and algebraic lattices appear in Appendix B.

2 Literature
The projective p-exact approach to persistence presented in this text was previewed
by an analogous matroid theoretic treatment in [10] and [11].

2



There is ample evidence to suggest that persistence modules valued in a cate-
gory other than finite-dimensional k-vector spaces have relevance to data science.
The earliest examples of persistent topological structure in data include spaces with
torsion, e.g. the Klein bottle [5]. The method of circular coordinates developed in
[14], for example, relies explicitly on the use of integer coefficients. Persistence
for circle-valued maps has also been considered by Burghelea and Dey in [3] and
by Burghelea and Haller in [4].

Work in Floer homology has recently prompted active exploration of the infinite-
dimensional case. In [21], Usher and Zhang introduces persistence for Floer ho-
mology via a non-Archimedean singular value decomposition of the boundary op-
erator of the chain complex. This work has generated a rapidly growing body of
literature [17], including works on autonomous Hamiltonian flows [16] and ratio-
nal curves of smooth surfaces [2].

The projective theory of Puppe exact categories received an expansive treat-
ment by Grandis in [9]. Puppe exact categories have previously appeared in TDA
literature, e.g. with regard to stability [1]. Lattice theoretic structure in persistence
modules has also been explored in [6] and [7].

The description of persistence in terms of the fundamental subspaces (kernel
and image) has been much discussed. The basics of this analysis appear in the orig-
inal paper of Robins [19], in the seminal papers by Edelsbrunner and Zomorodian
[8], and that of Carlsso and Zomorodian [23] which reformulates the persistence
diagram in terms of graded modules.

The generalized persistence diagram was introduced for R-parametrized con-
structible modules valued in Krull-Schmidt categories by Patel in [15]. Patel and
McClearly have recently adapted the principles introduced in this text to achieve
novel stability results in multiparameter persistence [13].

3 Notation
Partial orders The maximum element of a poset P (if it exists) will be denoted
1P, or simply 1 if context leaves no room for confusion. The minimum element
will be denoted 0P or 0.

The order relation of a partially ordered set P is denoted Rel(P). The dual
poset, i.e. the partial order on the same ground set, with opposite order, is denoted
P∗. The set Cov(P) is the family of covering relations of P. Formally, this is the
collection of all (p,q) ∈ Rel(P) such that no r ∈ P satisfies p < r < q. Given any
function f : S→ P, we write

f≤p = {s ∈ S : f (s)≤ p}.

Given partially ordered sets P, Q, the product poset is denoted P×Q. Given a∈ P,
we write

↓P a = {b ∈ P : b≤ a} ↓̊Pa = (↓P a)−{a}

↑P a = {b ∈ P : b≥ a} ↑̊Pa = (↑P a)−{a}

Where context leaves no room for confusion, we drop subscripts from arrows.
An interval in P is a subset Q⊆ S such that q∈Q whenever there exist p,r ∈Q

such that p≤ q≤ r. Given a,b ∈ P, we write [a,b] for the set {p ∈ P : a≤ p≤ b}.
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Lattices and total orders By a complete totally ordered lattice we mean a com-
plete lattice I that is totally ordered. This is distinct from a complete totally ordered
set, in that the latter may lack a top or bottom element. A chain in a lattice L is
a linear sublattice C ⊆ L. A chain is bounded if L is bounded and {0,1} ⊆C. It
is complete if C is a complete lattice and the inclusion C ↪→ L preserves arbitrary
meets and joins.

A nonzero element a in a lattice L with 0 is completely join irreducible if for
each S⊆ L such that a≤

∨
S there exists s ∈ S such that a≤ s. In this case, if L is

complete, a has a greatest strict predecessor, pred(a) =
∨
↓̊a. Dually, a nonidentity

element a in a lattice L with 1 is completely meet irreducible if for each S⊆L such
that

∧
S ≤ a there exists s ∈ S such that a≤ s. In this case, if L is complete, a has

a minimum strict successor, succ(a) =
∧
↑̊a. Given any lattice L, J(L) and J∗(L)

denote the sets of completely join and meet irreducible elements of L, respectively.
A lattice is upper continuous or meet continuous if for any a ∈ L the poset

homomorphism x 7→ x∧a preserves upward directed suprema. It is lower contin-
uous or join continuous L∗ is meet continuous, that is, if for any a ∈ L the poset
homomorphism x 7→ x∨a preserves downward directed infima.

As above, given a partial order P, we write P(P) for the powerset lattice of
P. Likewise, we write A(P) for the lattice of Alexandrov closed subsets of P, that
is, the decreasing subsets of P, ordered under inclusion. We write S(P) for the
sublattice of A(S) whose elements are those members of A(P) expressible in form
(↓ p0)∪·· ·∪ (↓ pm) for some finite collection p0, . . . , pm ∈ P.

Chain diagrams A chain diagram in E is a functor f from a totally ordered set I
to E. The support of a chain diagram is supp( f ) = {i ∈ I : fi 6= 0}.

An interval diagram is a chain diagram for which there exists an interval J⊆ I
such that fi = 0 for all i /∈ J and f (i ≤ j) is iso whenever i, j ∈ J. In this case J
is the support type of f . Every nonzero chain diagram has a unique support type.
The zero diagram has every support type. The object type of a nonzero interval
diagram is the isomorphism class fi, where i is any element of supp( f ). The object
type of a zero diagram is the isomorphism class of the zero objects.

4 Free objects
We briefly recall some results from [12].

Theorem 2 ([12]). If I1, I2 are complete totally ordered sublattices of a modu-
lar algebraic lattice L, then I1 ∪ I2 extends to a complete, completely distributive
sublattice iff ∧

b∈B

(a∨b) = a∨
∧
b∈B

b

for each element a ∈ I1∪ I2 and each set B contained in I1 or in I2.

Given a poset P, write B(P) for the family of decreasing subsets S ⊆ P such
that both S and P−S are nonempty.

Definition 1. If P is a partially ordered set and X ∈ {A,B}, then the free embed-
ding µ : P→ AX(P) is the map defined by µ(p) = {T ∈ X(P) : p /∈ T} for all
p ∈ P.
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Remark 1. Let µ : P→ AX(P) be the free embedding.

1. If X= A then µ(p) = A(P− ↑ p).
2. If X= A then µ fails to preserve existing top and bottom elements.
3. If X= B then µ preserves existing top and bottom elements.

Theorem 3 (Tunnicliffe 1985, [20]). Let P be a partially ordered set, L be a
complete, completely distributive lattice, and f : P→ L be an an order-preserving
function. In the following diagram,

AX(P)

P L

µ g

f

let µ denote the free embedding.

1. If X=A then the diagram commutes for exactly one complete lattice homo-
morphism g.

2. If X = B then the diagram commutes for exactly one unbounded-complete
lattice homomorphism g.

In either case, the unique commuting homomorphism satisfies

g(S) =
∨

X∈MS

∧
f (X) =

∧
Y∈NS

∨
f (Y )

where MS = {X ⊆ P :
∧

µ(X)⊆ S} and NS = {X ⊆ P : S⊆
∨

µ(X)}.

5 Puppe exact categories
Definition 2. A well-powered category E is Puppe exact (or p-exact for short) iff

1. E has a zero object, kernels, and cokernels
2. every mono is a kernel and every epi is a cokernel
3. every morphism has an epi-mono factorization

Given any arrow f : A→ B in a p-exact category E, we denote the direct image
operator f• : Sub(A) → Sub(B) and the inverse image operator f • : Sub(B) →
Sub(A).

Lemma 4. Let f : A→ B be any arrow in a p-exact category E.

1. Posets Sub(A) and Sub(B) are modular lattices.
2. The pair ( f•, f •) is a modular connection. Concretely, f• and f • are in-

creasing maps, and

f • f•(a) = a∨ f •(0) f• f •(b) = b∧ f•(1)

for all a ∈ Sub(A) and all b ∈ Sub(B). In particular, ( f•, f •) is a Galois
connection.

3. Consequently, if S⊆Sub(A) and
∨

S exists, then
∨
( f•S) exists, and f•(

∨
S)=∨

f•(S). Dually f •(
∧

S) =
∧

f •(S) for any S such that
∧

S exists.

Proof. See [9, p. 48-52].
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The family of bounded modular lattices and modular connections forms a
Puppe exact category under the composition rule

(g•,g•)◦ ( f•, f •) := (g• f•, f •g•).

Each arrow f : A→ B in this category admits a unique epi-mono factorization of
form

↓ f •0 A B ↑ f•1

↑ f •0 ↓ f•1

m f

q

p

g

n

where

q•(x) = x∨ f •0 n•(y) = y g•(x) = f•(x)

q•(x) = x n•(y) = y∧ f•1 g•(y) = f •(y)

See [9] for details. We denote this category Mlc. We denote the full subcategory
whose objects are complete modular lattices by CMlc.

Moreover, Each subobject of a lattice L in Mlc can be represented by a monomor-
phism of form ( f•, f •) : [0,a]L→L, where f• is inclusion and f •(b)= a∧b. Every
such pair of functions is a monomorphism in Mlc. Thus subobjects are in canonical
1-1 correspondence with intervals [0,a]⊆ L.

Dually, each quotient object of L in Mlc can be represented by an epimorphism
of form ( f•,g•) : L→ [a,0], where f • is inclusion and f•(b) = a∨b. Every such
pair of functions is an epimorphism in Mlc. Thus quotient objects are in canonical
1-1 correspondence with intervals [a,1]⊆ L.

Importantly for our story, diagrams make new p-exact categories from old.

Lemma 5. If E and I are categories and E is p-exact, then the category of dia-
grams EI is p-exact.

Proof. See [9, p. 48].

Lemma 6. Let C be a p-exact category, and let CI be the category of I-shaped
diagrams in C.

1. A sequence 0 // k // k∗ // //K A K∗ 0 is exact in CI if and

only if 0x // kx // k∗x // //Kx Ax K∗x 0x is exact in C for all

x ∈ Obj(I).
2. An arrow η in CI is mono (respectively, epi) iff ηx is mono (respectively, epi)

for all x ∈ Obj(I).
3. Let (B j) j∈J be an indexed family of subobjects of a diagram A ∈Obj(CI). If∨

j B j
x exists for all x ∈ Obj(I), then

∨
j B j exists and satisfies(∨

jB
j
)

x
=
∨

j

(
B j

x

)
for all x ∈ Obj(I). Dually, if

∧
j B j

x exists for all x, then
∧

j B j exists and
satisfies (∧

jB
j
)

x
=
∧

j

(
B j

x

)
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4. In particular, the subobject lattice of A ∈ Obj(CI) is complete iff that of Ax
is complete, for all x ∈ Obj(I).

Proof. That a short exact sequence is exact in CI if and only if it is object-wise ex-
act follows in a straight-forward fashion from the universal property of (co)kernels.
That an arrow is mono (respectively, epi) iff it is object-wise mono (respectively,
epi) follows from this characterization of (co)kernels in CI , and from the fact that
monos and epis in p-exact categories are normal [Grandis p 46]. With this char-
acterization established, it is straight-forward to check the formulae for (arbitrary)
join and meet, via the universal properties of subobjects.

6 Subquotients and kernel duality
Let I be a totally ordered set, and let

f : I→ CMlc

be a I-shaped diagram of complete modular lattices and modular connections. By
Lemma 6, the lattice of subdiagrams of f is complete. For each t ∈ I, define
K f (t) to be the maximum subobject of f such that K f (t)a = 0 for all a ≥ t. The
resulting set function K f : I→ Sub f preserves order, and extends to a complete
lattice homomorphism

K f : A2(I)→ Sub f .

Recall that K f denotes both the original map I→ Sub f and its extension to A2(I),
by convention. Dually, define K∗f (t) to be the minimal subobject of f such that
K∗f (t)a = 1 for all a≤ t, and extend this map to a complete homomorphism

K∗f : A2(I)→ Sub f .

The relation between K f and K∗f merits careful description. Let φ : I→ Iop

denote the canonical opposite isomorphism functor, and define an involutive anti-
isomorphism functor ψ : Mlc→Mlc by

ψ : L 7→ Lop ( f•, f •) 7→ ( f•, f •).

for each lattice L and modular connection ( f•, f •). Then to each functor f : I→
Mlc corresponds a unique f ∗ such that the following diagram commutes

I CMlc

Iop CMlc

f

φψ

f ∗

The map f 7→ f ∗ determines an anti-isomorphism η : [I,Mlc]∼= [Iop,Mlc]. As
φ is also an anti-isomorphism, there exists a unique map K∗f such that the rectangle
formed by vertical and horizontal arrows in the following diagram commutes, and
one may check that this formulation of K∗f agrees with the former. If, in addition,
κ is the isomorphism A2(Iop)→ A2(I) defined κ(S) = {X ∈ A(I) : I−X /∈ S},
then by a routine exercise the entire diagram commutes.
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[I,Mlc] [Iop,Mlc]

A2(I) A2(Iop)

I Iop

η

κ

A2(K∗f ) A2(K f∗ )

K∗f

φ

K f∗

Therefore, up to post-composition with an op-isomorphism, K f and K∗f repre-
sent identical constructions, one applied to f , and the other to f ∗. Besides concep-
tual clarification, this affords several proofs by duality.

Let

X = {
∨

S : S⊆ µ(I)} Y = {
∨

S : S⊆ µ(I)}.

Lemma 7. Every element of A2(I) has form ↓ (U) or ↓̊(U) for some U ∈ A(I).

Proof. Fix S ∈ A2(I). It is simple to show that S = ↓̊(
⋃

S) when
⋃

S /∈ S.

Lemma 8. One has A2(I) = X ∪Y .

Proof. Let T ∈ A2(I) be given. If T cannot be expressed in form ↓ (U) then⋃
T ⊆ I contains no maximum, and it is simple to show that T ∈ X . If T can be

expressed in form ↓ (U) for some U , then T =
∧
{µ(i) : i /∈U} ∈ Y .

Lemma 9. Fix a∗,a ∈ I and z∗ ∈ A2(I) such that z∗ ≤ µ(a∗)≤ µ(a).

1. If z∗ = µ(t∗) then

f (a∗ ≤ a)• f (t∗ ≤ a)•1 = f (t∗ ≤ a∗)•1∨ f (a∗ ≤ a)•0 (1)

f (a∗ ≤ a)• f (a∗ ≤ a)• f (t∗ ≤ a)•1 = f (t∗ ≤ a)•1 (2)

2. If z∗ ∈ X, then

f (a∗ ≤ a)•K∗f (z
∗)a∗ = K∗f (z

∗)a (3)

K∗f (z
∗)a∗ ∨ f (a∗ ≤ a)•0 = f (a∗ ≤ a)•K∗f (z

∗)a (4)

3. If z∗ ∈ Y then

f (a∗ ≤ a)•K∗f (z
∗)a∗ ≤ K∗f (z

∗)a (5)

K∗f (z
∗)a∗ ∨ f (a∗ ≤ a)•0≤ f (a∗ ≤ a)•K∗f (z

∗)a (6)

f (a∗ ≤ a)•0∨
∧

t∗∈T
f (t∗ ≤ a∗)•1≤

∧
t∗∈T

f (a∗ ≤ a)•0∨ f (t∗ ≤ a∗)•1 (7)

where T = {i ∈ I : z∗ ≤ µ(i) ≤ µ(a∗)}. If, in addition, strict equality holds
in any one of these estimates, then it holds in all three.

Proof. All conclusions may be deduced from Lemma 11, by duality. To argue
independently, Equation (1) follows from

f (a∗ ≤ a)• f (a∗ ≤ a)• f (t∗ ≤ a∗)•1 = f (t∗ ≤ a∗)•1∨ f (a∗ ≤ a)•0.
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Equation (2) is self-evident, but may be formally deduced by precomposing both
sides of (1) with f (a∗ ≤ a)•. Equation (3) holds because direct image preserves
join. Equation (4) follows from (3) by definition of modular connection.

Estimate (7) is a standard property of lattices. The left and righthand sides are
identical to those of (6), by (1). Equation (6) converts to (5) via precomposition
with f (a∗ ≤ a)•, and (5) converts to (6) via precomposition with f (a∗ ≤ a)•. All
conversions preserve strict equality.

Corollary 10. Equality holds in (5) - (7) if lattice f (a∗) is lower-continuous. It
may fail when f (a∗) is not lower-continuous.

Proof. Both claims follow from Corollary 12, by duality. Alternatively, lower-
continuity implies strict equality in (7). Example 1 shows that strict equality does
not hold, in general.

Example 1. Equality need not hold in (5), (6), or (7), in general. Let {a∗,a} be
any set of two formal symbols, and let I be the total order on Z∪{a∗,a} such that
p≤ q≤ a∗ ≤ a for any p,q ∈ Z. Set

f (x) =

{
R{p∈Z:p≤x} x≤ a∗

R x = a
f (x≤ y)v =

{
v x≤ y≤ a∗

∑p≤y vp x≤ y = a.

for ν = (νp)p≤x ∈ f (x). If c = ( /0,I), then K∗f (c
∗
+)a∗ = 0 and K∗f (c

∗
+)a = R. Thus

the righthand side of (5) vanishes, while the righthand side does not.

Lemma 11. Fix a∗,a ∈ I and z ∈ A2(I) such that µ(a∗)≤ µ(a)≤ z.

1. If z = µ(t) for some t, then

f (a∗ ≤ a)•1∧ f (a≤ t)•0 = f (a∗ ≤ a)• f (a∗ ≤ t)•0 (8)

f (a∗ ≤ t)•0 = f (a∗ ≤ a)• f (a∗ ≤ a)• f (a∗ ≤ t)•0. (9)

2. If z ∈ Y then

f (a∗ ≤ a)•K f (z)a = K f (z)a∗ (10)

f (a∗ ≤ a)•K f (z)a∗ = K f (z)a∧ f (a∗ ≤ a)•1 (11)

3. If z ∈ X then

K f (z)a∗ ≤ f (a∗ ≤ a)•K f (z)a (12)

f (a∗ ≤ a)•K f (z)a∗ ≤ f (a∗ ≤ a)•1∧K f (z)a. (13)∨
t∈T

f (a∗ ≤ a)•1∧ f (a≤ t)•0≤ f (a∗ ≤ a)•1∧
∨
t∈T

f (a≤ t)•0. (14)

where T = {i ∈ I : µ(a)≤ µ(i)≤ z}. If, in addition, strict equality holds in
any one of these estimates, then it holds in all three.

Proof. All conclusions may be deduced from Lemma 9, by duality. To argue
independently, Equation (8) holds by functoriality, since the lefthand side is

f (a∗ ≤ a)• f (a∗ ≤ a)• f (a≤ t)•0 = f (a≤ t)•0∧ f (a∗ ≤ a)•1.
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Equation (9) is self-evident, but may be formally deduced by precomposing both
sides of (8) with f (a∗ ≤ a)•. Equation (10) holds because inverse image preserves
meet, and (11) follows by definition of modular connection.

Estimate (14) is a standard property of order lattices. The left and righthand
sides are identical to those of (13), by (8). In turn, (13) converts to (12) via pre-
composition with f (a∗ ≤ a)•, and (12) converts to (13) via precomposition with
f (a∗ ≤ a)•. All conversions preserve strict equality.

Corollary 12. Equality holds in (12) - (14) if f (a) is upper-continuous. It may
fail if f (a) is not upper-continuous.

Proof. Both claims follow from Corollary 10, by duality. Alternatively, since di-
rect image preserves join, upper-continuity implies strict equality in (14). Example
2 yields a counterexample to the general case.

Example 2. In contrast to (5)-(7), estimates (12)-(14) hold with strict equal-
ity in every persistence module valued in a category of modules and module-
homomorphisms, since the subobject lattices in all such categories are upper-
continuous. However, strict equality does not hold in general. For a counter
example, one may simply apply the involutive anti-isomorphism η to the chain
diagram f defined in Example 1.

Corollary 13. If s∗,s ∈ A2(I), and a∗,a ∈ I satisfy s∗ ≤ µ(a∗)≤ µ(a)≤ s, then

f (a∗ ≤ a)•K∗f (s
∗)a∗= K∗f (s

∗)a f (a∗ ≤ a)•K∗f (s
∗)a = K∗f (s

∗)a∗ ∨K f (a)a∗

f (a∗ ≤ a)•K f (s)a = K f (s)a∗ f (a∗ ≤ a)•K f (s)a∗ = K∗f (a
∗)a∧K f (s)a.

Having established the primitive relations between K f , K∗f , and the direct and
indirect image operators, we may proceed to compound expressions. For economy
of notation, given any s∗,s ∈ A2(I) put

ds∗,se= K∗f (s
∗)∧K f (s) bs∗,sc= K∗f (s

∗)∨K f (s).

Remark 2. Corollary 14 seems to suggest that some implications can’t be in-
verted. In particular, if everything in sight were iff, then we could deduce that
upper-continuous implies lower-continuous.

Corollary 14. If s∗ ≤ µ(a∗)≤ µ(a)≤ s, then

f (a∗ ≤ a)•ds∗,sea ≥ ds∗,sea∗
f (a∗ ≤ a)•bs∗,sca∗ ≤ bs∗,sca.

If, in addition, equality holds in (5)-(7) and (12)-(14), then

f (a∗ ≤ a)•ds∗,sea∗ = ds∗,sea (15)

f (a∗ ≤ a)•bs∗,sca = bs∗,sca∗ (16)

Proof. Lemmas 9 and 11 imply that f (a∗ ≤ a)•La∗ ≤ La and f (a∗ ≤ a)•La ≥ La∗

for L ∈ {K f (s),K∗f (s
∗)}. The two inequalities follow. To check the equations,
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assume strict equality in (5)-(7) and (12)-(14). Corollary (13) then provides the
second of the following identities, and the modular law provides the third.

f (a∗ ≤ a)•ds∗,sea = [ f (a∗ ≤ a)•K∗f (s
∗)a]∧ [ f (a∗ ≤ a)•K f (s)a]

=
[
K f (a)a∗ ∨K∗f (s

∗)a∗
]
∧K f (s)a∗

= K f (a)a∗ ∨ds∗,sea∗ .

Postcomposition with f (a∗ ≤ a)• yields (15), since ds∗,sea ≤ f (a∗ ≤ a)•1. Sym-
metrically, Corollary (13) provides the second of the following identities, and the
modular law provides the third.

f (a∗ ≤ a)•bs∗,sca∗ = [ f (a∗ ≤ a)•K∗f (s
∗)a∗ ]∨ [ f (a∗ ≤ a)•K f (s)a∗ ]

= K∗f (s
∗)a∨

[
K f (s)a∧K∗f (a

∗)a

]
= bs∗,sca∧K∗f (a

∗)a.

Postcomposition with f (a∗ ≤ a)• yields (16), since f (a∗ ≤ a)•0≤ bs∗,sca∗ .

Corollary 15. Suppose that s∗ ≤ µ(a∗) ≤ µ(a) ≤ s, and posit strict equality in
(5)-(7) and (12)-(14).

1. Map f (a∗ ≤ a)• restricts to a surjection ↓ ds∗,sea∗ −→ ↓ ds∗,sea.
2. Map f (a∗ ≤ a)• restricts to an injection ↑ bs∗,sca −→ ↑ bs∗,sca∗ .

Proof. The desired conclusion follows from Corollary 14 and from the canonical
epi-mono factorization of Mlc.

Definition 3. For convenience, given a subobject M of an object A, set

Mquo = A/ M.

Remark 3. The second half of Corollary 15 be interpreted as follows: when
equality holds in (5)-(7) and (12)-(14), the (unrestricted) inverse image opeartor
g(a≤ a∗)• is mono, where g = bs∗,scquo.

Remark 4. If either a∗ or a lies outside the interval (c∗,c) then the criteria of
Corollary 14 cannot be satisfied, and its conclusion may fail. For example, if
a∗ ≤ a < c∗ ≤ c, and f (t) 6= 0 iff t = a, then ds∗,sea∗ = 0 and ds∗,sea 6= 0, so (15)
cannot hold.

Lemma 16. For all cuts c∗ and c,

dc∗+,c+e∧bc∗−,c−c= dc∗−,c+e∨dc∗+,c−e (17)

Dually,

dc∗+,c+e∨bc∗−,c−c= bc∗−,c+c∧bc∗+,c−c (18)

Proof. The sublattice generated by K f and K∗f is distributive.

Corollary 17. If equality holds in (5)-(7), then

dc∗+,c+e∧bc∗−,c−c(a∗ ≤ a)•

is epi. Dually, if equality holds in (12)-(14), then

dc∗+,c+e∨bc∗−,c−cquo(a∗ ≤ a)•

is mono.

11



Proof. The first claim follows from Lemma 16, equation 17, and Corollary 14,
equation 15. The second follows from the respective duals to these identities.

Remark 5. In particular,

f (a∗ ≤ a)•dc∗+,c+e∧bc∗−,c−ca∗ = dc∗+,c+e∧bc∗−,c−ca
f (a∗ ≤ a)•dc∗+,c+e∨bc∗−,c−ca = dc∗+,c+e∨bc∗−,c−ca∗

when the corresponding conditions hold in Corollary 17.

Definition 4. Given subobjects M,N of an object A in an exact category E, a dou-
ble slash M//N represents the subquotient M/ (M∧N). Dually, M//∗N represents
(M∨N)/N.

Lemma 18. Let i∗ and i be completely join irreducible elements of I±, with un-
derlying cuts c∗ = π(i∗) and c = π(i).

1. If equality holds in (5)-(7), then the subquotient

di∗, ie// bpred(i∗),pred(i)c

is an interval module of support type (c∗)•∩ c•.
2. If equality holds in (12)-(14), then the subquotient

di∗, ie//∗ bpred(i∗),pred(i)c

is an interval module of support type (c∗)•∩ c•.
3. Set A = di∗, ie and B = bpred(i∗),pred(i)c. Let φ be the following indexed

family of diamond isomorphisms. If equality holds in (5)-(7)and (12)-(14),
then φ is a natural isomorphism A // B→ A //∗ B. In particular, φ is an
isomorphism of interval persistence modules.

&
f (a∗≤a)•

rr

xxxxxxxxx

FFFFFFFFF

&

f (a∗≤a)•

22 &

f (a∗≤a)•

ss

vvvvvvvvv

HHHHHHHHH

FFFFFFFFF

xxxxxxxxx

φa

;;xxxxxxxxx

& f (a∗≤a)•

22HHHHHHHHH

vvvvvvvvv

φa∗

::vvvvvvvvv

Aa∨Ba

Aa∗ ∨Ba∗ Aa Ba

Aa∗ Ba∗ Aa∧Ba

Aa∗ ∧Ba∗

Proof. Assume that i∗ = c∗+ and i = c+, for otherwise A = B = 0, by Lemma ??.
Consequently pred(i∗) = c∗− and pred(i) = c−. Likewise assume c∗+ ≤ c+, since
otherwise K∗f (c

∗
+)∧K f (c+)< K∗f (c

∗
+), hence K∗f (c

∗
+)∧K f (c+)≤ K∗f (pred(c∗+))

and again A and B vanish.
For the first proposition, posit (5)-(7)and fix c∗ ≤ a∗ ≤ a ≤ c. Then f (a∗ ≤

a)•Aa∗ = Aa by Corollary 15 and f (a∗ ≤ a)•(Aa∗ ∧Ba∗) = Aa ∧Ba by Remark 5.
The corresponding map of subquotients [Aa∗ ∧Ba∗ ,Aa∗ ]→ [Aa∧Ba,Aa] has kernel

[(Aa∗ ∧Ba∗)∨ f (a∗ ≤ a)•0]∧Aa∗ = (Aa∗ ∧Ba∗)∨ [ f (a∗ ≤ a)•0∧Aa∗ ] .
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with equality provided by the modular law. Since f (a∗ ≤ a)•0≤K f (c−)a∗ ≤ Ba∗ ,
the righthand side equals Aa∗ ∧Ba∗ . Thus the induced map is epi and mono, hence
iso.

For a > c the quotient diagram vanishes, since the numerator dc∗+,c+ea van-
ishes. For a∗ < c∗ one has dc∗+,c+ea∗ ≤ fa∗ = bc∗−,c−ca∗ , hence numerator and
denominator agree, and again the quotient vanishes.

This establishes the first proposition. The proof of the second is dual. That φ

is a natural isomorphism follows from coherence (Grandis 2.7.7).

7 Generalized persistence diagrams
The study of persistent homology serves both as a driver for diverse research ini-
tiatives in pure and applied fields of mathematics, and as a substrate where these
fields can interact. Until quite recently, the study of persistence focused almost
exclusively on homology with field coefficients. However, Patel [15] has recently
proposed several notions of persistence diagram suitable for any Krull-Schmidt
category and, in particular any abelian one, subject to certain finiteness constraints.

The idea behind these constructions shares the spirit in which the first linear
persistence diagrams were cast, eg [8]. A condensed summary appears in §8.1. On
a high level, the strategy is to cast the persistence diagram as the Möbius inverse
of a so-called rank function. The key insight of Patel was a suitable definition
of Möbius inverse when the the rank function takes values not in integers, but in
objects of a Krull-Schmidt category.

This notion is ground breaking. It offers a vast array of new invariants with
which to study filtered complexes, both in pure mathematics and in data science.
It likewise lifts the study of persistence modules to a level of abstraction suitable
to substantive questions in homological algebra.

A fundamental step toward realizing the potential of this contribution is under-
standing how to assign semantic meaning to persistence diagrams with nonlinear
coefficients. In the case persistent homology with linear coefficients, this question
has been answered by overwhelming consensus of the TDA community in terms
of the indecomposable factors of the persistence module. We propose that interval
factors should assume this rule for the new persistence.

The argument in favor of this motion is arranged as follows. Posit a chain
diagram f : I→ E for some abelian category E, and suppose that a complete lat-
tice homomorphism Λ : A(J(I±)2)→ Sub( f ) cuts the associated diamond with
marginals K f and K∗f , coherenetly. We show that the rank function of f

7.1 Background
We review the fundamentals of generalized persistence laid out in [15].

Let Dgm be the poset whose elements are intervals in R that contain a mini-
mum but no maximum, and whose order is reverse inclusion. Let G be an abelian
group with a translation invariant ordering on its elements, and S be a finite set. A
map Y : Dgm→ G is S-finite if Y (I) 6= 0 implies I = [si,s j) or I = [si,∞) for some
si,s j ∈ S. It is a Patel persistence diagram if it is S-finite for some S.

A functor f from R to an essentially small symmetric monoidal category E
with identity object e is S-constructible in the sense of [15] if S = {s1 < · · · <
sn} ⊆ R is finite and

13



1. for p≤ q < s1, map f (p≤ q) is identity on e
2. for si ≤ p≤ q < si+1, map f (p≤ q) is an isomorphism
3. for sn ≤ p≤ q, map f (p≤ q) is an isomorphism.

Functor f is constructible if it is S constructible for some S.
Let J(E) be the set of isomorphism classes of E, regarded as a commutative

monoid under the the binary monoidal operation �. That is, [a]+ [b] = [a�b]. Let
A(E) be the group completion of J(E). When E is abelian one may define B(E) as
the quotient A(E)/ ∼, where [a] ∼ [b]+ [c] iff there exists a short exact sequence
(not necessarily split) 0→ b→ a→ c→ 0. Both A(E) and B(E) admit translation
invariant partial orders compatible with subobject inclusion. See [Patel] for details.

To every S constructible functor f one may associate a map d fB as follows.
Select a δ > 0 such that si < si+1− δ for all i ∈ {1, . . . ,n− 1}, and any s′ > sn.
Then

d fB(I) =


[Im( f (p < si−δ ))] I = [p,si)

[Im( f (p < s′))] I = [p,∞)

[Im( f (p < q))] all other I = [p,q)

and d fA(I) = π(d fB(I)), where π is the quotient map J(E)→ B(E).

Definition 5 (Patel). The type A persistence diagram of f is the Möbius inversion
f A : Dgm→ A(E) of d fA. If E is Abelian, then the type B persistence diagram of
f is the Möbius inversion f B : Dgm→ B(E) of d fB.

7.2 Results
Let E be an essentially small abelian category where every object has finite height,
and let ϒ be the set of isomorphism classes of simple objects in E.

As in any category of finite-length ring modules, to each object A in E corre-
sponds a multiset of composition factors comp(A), regarded as finitely supported
set function ϒ→ Z≥0. One may calculate comp(A) as the multiset of quotients
of form Ai/ Ai−1 for any maximal chain 0 = A0 ≤ ·· · ≤ Am = A in the order lat-
tice Sub(A). This quantity is well defined, see Grandis 6.1.6, p250. Consequently,
B(E) is canonically isomorphic to the family of finitely supported functions ϒ→Z.

Theorem 19. Let f : R→ E be a constructible persistence module. Then f has an
interval code β , and the type-B persistence diagram of f may be expressed

f B = φβψ

where ψ : Dgm→ Cut(I)2, [a,b) 7→ (εa,εb) and φ(g) is the object type of g, re-
garded as an element of B(E).

Proof. Since f is constructible, filtrations K f and K∗f take only finitely many val-
ues. Thus diamond (19) has a complete coherent cut Λ.

I±

P(J(I±)2) Sub( f )

I±

λ ∗ K∗f

Λ

λ K f

(19)
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Let [a,b) ∈ Dgm be given and, for convenience, write

ε
a = (R<a,R≥a) x∗ = λ

∗(εa
+) x = λ (εb

+).

It is simple to check that d fA[a,b) = comp(A), where A is the subquotient

K∗f (ε
a
+)a //K f (ε

b
+)a = (Λx∗)a/ (Λ(x∗∩ x))a.

Setting P = x∗− x, define a complete lattice homomorphism

Γa : A(P)→ [Λ(x∗∩ x)a,Λ(x∗)a]∼= Sub(A) Γa(T ) = Λ(T ∪ (x∗∩ x))a.

Setting γ(p) = comp((Γ ↓ p) / (Γ↓̊p)), we have comp(A) =∑p∈P γ(p), by Lemma
20. We claim that γ vanishes on p = (c∗σ ∗ ,cσ ) when either of the following condi-
tions hold.

1. At least one of σ∗ and σ is negative.
2. At least one of c∗• and c• has a maximal element.

Indeed, if one of σ∗, σ is negative then γ(p) vanishes by Theorem ??. If c∗• or c•
has a maximal element then it can be reasoned directly that K f (cσ )=K f (pred(cσ ))
or K∗f (c

∗
σ ∗) =K∗f (pred(c∗σ ∗)), since f is constructible. In either case γ(p) vanishes.

An element p ∈ P violates conditions 1 and 2 iff p = (εa′
+ ,εb′

+ ) for some a′ ≤ a and
some b′ ≥ b. If we denote the set of all such violators by P′, then

d fA[a,b) = comp(A) = ∑
p∈P′

γ(p) = ∑
[a,b)⊆[a′,b′)

φ(β (εa′ ,εb′)).

Thus φβψ and d fA are Möbius transforms, which was to be shown.

Lemma 20. Let A be an object of finite length in an abelian category E. If P is a
partially ordered set and Λ : A(P)→ Sub(A) is a complete lattice homomorphism,
then

comp(A) = ∑
p∈P

comp((Λ ↓ p) / (Λ↓̊p)).

Proof. Let ` be any linearization of P, and let J = {Λ(S) : S ∈ A(`)}, noting that
J is finite. Fix (i, j) ∈ Cov(J) and define F = {S ∈ A(`) : j ≤ Λ(S)} and Fc =
A(`)−F = {S ∈ A(`) : Λ(S)≤ i}. Then∨

Fc = maxFc
∧

F = minF
∨

Fc = pred`(
∧

F).

Since
∧

F has a predecessor, it contains a maximum element φ(i, j) ∈ `. The set
function φ : Cov(J)→ ` is clearly injective. It is simple to check that (Λ`≤p)/ (Λ`<p)=
0 for any p that lies outside the image of φ , while for p = φ(i, j) one has a modular
diamond

`≤p

CC
CC

CC
CC

{{
{{
{{
{{

`<p P≤p

P<p

{{{{{{{{

CCCCCCCC

(20)
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εb
+

εb
+

S = λ ∗εa
+−λεb

+

λεb
+

Figure 1: Elements of A(I′×J′), in the special case where I′ = {i1 < i2 <
i3} ⊆ I = R and J′ = {i1 < i2 < i3} ⊆ J = R.

hence subquotient j/ i=(Λ`≤p)/ (Λ`<p) is canonically isomorphic to (ΛP≤p)/ (ΛP<p).
The desired conclusion follows, since comp(A) = ∑(i, j)∈Cov(J) comp( j/ i).

Theorem 21. Let f : I→ E be a constructible chain diagram in an abelian cate-
gory E, and let S be the poset supp(d fA) = {[a,b) : d fA[a,b) 6= 0} with the partial
order inherited from Dgm. Then each linearization ` = {l1 < · · · < lN} of S cor-
responds a unique sequence of submodules 0 = g0 ⊆ ·· · ⊆ gN = f such that

β (am,bm) = [gm/ gm−1]

for all 1≤ m≤ N, where [am,bm) = lm.

Proof. By a simple induction, it suffice to show that there exists a unique submod-
ule g1 such that β (a1,b1) = [g1/g0] = [g1]. Put

g0 = Λ↓̊(εa1

+ ,εb1

+ ) g1 = Λ ↓ (εa1

+ ,εb1

+ ).

Since [a1,b1) is minimal in S, the set S′ = {(εa
+,ε

b
+) : [a,b) ∈ S} has trivial inter-

section with ↓̊(εa1

+ ,εb1

+ ). Therefore g0 vanishes, and by definition

β (a1,b1) = [Λ ↓ (εa1

+ ,εb1

+ )/ Λ↓̊(εa1

+ ,εb1

+ )] = [g1].

This establishes existence. For uniqueness, let h be any subdiagram of f such that
[h] = β (a1,b1). Since supp(h) = [a1,b1), one has h ≤ K f (ε

b1

+ ) and h ≤ K∗f (ε
a1

+ ),
hence

h≤ K∗f (ε
a1

+ )∧K f (ε
b1

+ ) = Λ ↓ (εa1

+ ,εb1

+ ) = g1.

If h is a proper submodule then its object type will have composition length strictly
less than that of [g1] = β (a1,b1), a contradiction. Therefore h = g1.

Example 3. Define h : [0,∞)→ Z by

hi =


0 0≤ i < 1
4 1≤ i < 2
2 2≤ i
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and let f be the R shaped diagram in the category of abelian groups such that
fi = 0 for i < 0, and

fi = Z/ hi f (i≤ j)•(x+hi) = x+h j

for 0 ≤ i ≤ j. The values of f on objects are represented schematically in Figure
2.

Filtration K∗f then takes exactly two values, 0 and f . Filtration K f takes two
nontrivial values, the submodules with support [0,1) and [0,2). Consequently
supp(d fA) = {l1, l2, l3}, where

l1 = [0,1) l2 = [0,2) l3 = [0,∞).

This set admits a unique linear order l1 < l2 < l2 compatible with inclusion. The
values of gp and of the interval modules gp/ gp−1 appear in Figure 2.

The value added by the lattice-theoretic approach is underscored by the fact
that we can now associate generators to the persistence diagram. Suppose, for
example, that S is a unit circle, A and B are disks, and η : ∂A→ S and κ : ∂B→ S
are continuous maps with winding numbers 4 and 2, respectively. Let X be the
functor from R to the category of continuous maps and topological spaces such
that

Xi =


/0 i < 0
S 0≤ i < 1
S∏

η A 1≤ i < 2
S∏

η A∏
κ B 2≤ i

and X(i≤ j) is inclusion for all i≤ j. Postcomposing X with the degree 1 singular
homology functor – with integer coefficients – yields a chain diagram isomorphic
to f :

f ∼= H1 ◦X .

Moreover, if ζ is a fundamental class for S, then the nonzero objects in the cyclic
quotient modules g1/g0, g2/g1, and g3/g2 are generated by [4ζ ], [2ζ ], and [ζ ],
respectively. In the parlance of topological data analysis, these generators repre-
sent three “features” of data born at time zero, that vanish at times 1, 2, and ∞,
respectively.

A Appendix: order decomposition
Several profound decomposition schemas in pure mathematics rest either wholy or
in part on a family of order lattices. In some cases, the associated family consti-
tutes a discipline in its own right:

Measure theory the decomposition of a ground set into measurable subsets. By
definition, a sigma algebra on S is a complemented sublattice of P(S) with count-
able joins.
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0 1 2

0
Z

0Z
Z
4Z

Z
2Z

( )

0 1 2

0
2Z
0Z

2Z
4Z

2Z
2Z

( )

0 1 2

0
4Z
0Z

4Z
4Z

4Z
2Z

( )

0 1 2

0 C2 C2 C2
( )

0 1 2

0 C2 C2 0
( )

0 1 2

0 C∞ 0 0
( )

gp gp/gp−1

p = 1

p = 2

p = 3

Figure 2: Subquotients of chain diagram f = g3.

−1

−1
0

0

1

2

∞ 〈ζ 〉= β (0,∞)∼=C2

〈2ζ 〉 ∼=C2

〈4ζ 〉 ∼=C∞ A S B
η

×4

κ

×2

ζ

Figure 3: Left The Patelian persistence diagram of chain diagram f .
Right Components of the identification space S∏

η A∏
κ B. Element ζ ∈

H1(S ; Z) is a fundamental class of S.
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Topology the decomposition of a ground set into open subsets. By definition, a
topology on S is a bounded sublattice of P(S) with arbitrary joins.

In other cases, multiple lattice families associate to a single branch, each re-
vealing a distinct aspect of its essential character.

Algebra the decomposition of subobjects. Let P(N) be the power set lattice on
{1, . . . ,N} and A(N) be the Alexandrov topology on {1, . . . ,N}, that is, the lattice
of down-closed sets. In §X, we will see that for any abelian group G with lattice of
subgroups Sub(G), the internal direct sum decompositions G ∼= �iHi correspond
naturally to lattice homomorphisms P(N)→ Sub(G), while filtrations of G corre-
spond naturally to lattice homomorphisms A(N)→ Sub(G).

Thus two elementary notions in algebra – filtration and direct sum – correspond
to complete embeddings of two different lattice families, A(N) and P(N), into a
lattice of subobjects. There are in fact several posets P for which maps A(P)→
Sub(G) inform our understanding of G, not only when G is abelian group, but also
when it is any object in an exact category. In what follows, we focus primarily on
homomorphisms of form

Λ : X(P)→ Sub(V ) (21)

where V is a module over ring R, Sub(V ) is the lattice of submodules:

A∨B = A+B A∧B = A∩B (A,B⊆V )

P is a partially ordered set, and X(P) is some lattice of subsets of P:

S∨T = S∪T S∧T = S∩T. (S,T ⊆ P)

We treat two forms of X(P) in particular: the power set lattice

P(P) := {S : S⊆ P}

and the Alexandrov topology

A(P) := {S⊆ P : S = ∪s∈S ↓ (s)}

It will be useful to recall some examples for particular values of P.

A.1 Ring modules: P = {1, . . . ,N}
When P = {1, . . . ,N}with the canonical order on integers, lattice homomorphisms
of type (21) take familiar forms.

A.1.1 Filtration

A (bounded, finite) filtration on a module V is a nested sequence of submodules of
form 0 = Λ0 ⊆ ·· · ⊆ΛN =V . Equivalently, it is a monotone map Λ : {0, . . . ,N}→
Sub(V ) that preserves top and bottom elements. Since A({1, . . . ,N}) is canoni-
cally isomorphic to {0, . . . ,N} as an order lattice, it follows that (finite, bounded)
filtrations lie in canonical 1-1 correspondence with complete lattice homomor-
phisms

Λ : A({1, . . . ,N})→ Sub(V ).
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T
1 2 3 4 5 6

1
2
3
4
5
6

(a) Persistence diagram of f

Λ(T )

1 2 3 4 5 6

(b) Barcode of f

Figure 4: By definition, Λ(T ) = Λg(T ) is the sum of all interval submod-
ules gs whose birth/death pairs lie in T . The submodules in question for
this picture are g1, supported on [1,3), and g2, supported on [2,4).

A.1.2 (Internal) direct sum

If (Ui)1≤i≤N is an indexed family of submodules of V , then V is the internal di-
rect sum of Ui iff the rule {i0, . . . , im} 7→Ui0 + · · ·+Uim defines a complete lattice
homomorphism

Λ : P({1, . . . ,N})→ Sub(V ).

If this is not immediately clear, the example R2 ∼= R⊕R may prove a useful exer-
cise. This connection places finite internal direct sums in canonical 1-1 correspon-
dence with bounded lattice homomorphisms indexed by P(P).

A.2 Homological persistence: P = R2

In the case P = {1, . . . ,N} we saw that direct sums correspond to lattice ho-
momorphisms P(P)→ Sub(V ), while filtrations correspond to homomorphisms
A(P)→ Sub(V ). These decomposition schemes have unique strengths and weak-
nesses that can be combined and exploited. These principles hold for lattice ho-
momorphisms indexed by P(P) and A(P) generally. Let us see how they manifest
in the context of homological persistence, with P = R2.

For concreteness, fix a ground field k and a diagram f : R→ k-Mod in the
abelian category [R,k-Mod] of R-shaped diagrams in k-Mod and natural transfor-
mations between them. Suppose that f = g1 � · · ·� g4 is the internal direct sum
of an indexed family of subdiagrams g such that each gs is an interval module
supported on [s,s+ 2). Figure 4 displays the associated barcode and persistence
diagram. To these data one can associate lattice homoorphisms

Λ
g : P(R2)→ Sub( f ) T 7→ span({gs : (s,s+2) ∈ T}).

and

Λ = Λ
g|A(T ) : A(R2)→ Sub( f )

As outline below, these homomorphisms correspond to direct sum and bifiltration.
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A.2.1 Direct sum

We noted earlier a 1-1 correspondence between internal direct sum decomposi-
tions of a module V into an indexed family of N summands on the one hand, and
lattice homomorphisms P(P = {1, . . . ,N})→ Sub(V ) on the other. One can of
course substitute {1, . . . ,N} for any poset of cardinality N and obtain the same re-
sult. One can likewise substitute V for any object in an Abelian category, though
in this case one must also declare what is meant by internal, eg, by fixing a uni-
verse. Homomorphism Λg is the canonical lattice map associated to g, under this
correspondence.

This map has several attractive properties. Given an oracle that returns the
value of Λg on any element of P(P), for example, the barcode and persistence
diagram of f become readily computable, since, in particular, Λg{(a,b)} is the
sum of all gs supported on [a,b).

However, there is something unnatural about Λg. It is canonically determined
by g, and not by f . For example, one can construct an internal direct sum decom-
position f =�s∈Sg′s such that Λg 6= Λg′ .

This presents a problem when f is the basic object of interest. To formulate
the Krull-Schmidt decomposition of f , which lies at the heart of most modern
treatments of homological persistence, one must “add” structure. In many cases
this pollution leads to no difficulty in particular, but in many others the problem of
disentangling what is essential to f from what is essential to g becomes entrenched.
This is particularly the case in homological algebra, where naturality is key. This
example typifies a general confound of direct sums: like a choice of basis, they are
often useful, but seldom natural.

A.2.2 Bifiltration

In a previous example we noted that (bounded, finite) filtrations, or lattice ho-
momorphisms A(P = {1, . . . ,N})→ Sub(V ), appear more often in nature than do
direct sums, thanks to lighter structure requirements. By the same token, these
maps also tend to behave in a natural manner, categorically.

Such is the case in the persistent context, also. While Λg : P(R2)→ Sub( f ) is
not uniquely determined by f , the restriction Λ : A(R2)→ Sub( f ) is. The proof
follows from the fact that A(R2) is a complete sublattice of P(R2), that Λg is a
complete lattice homomorphism, and that Λg is uniquely determined on sets of
form (−∞, t]×R and R× (−∞, t], as we will show.

Given direct access to the values of Λ, one can compute the barcode of f , and
therefore its isomorphism type, with relative ease:

Λ(↓ (b,d))/ Λ(↓̊(b,d))∼= span(gs : birth(gs) = b, death(gs) = d). (22)

This requires a bit more work than would be strictly necessary if we had direct
access to Λg: with the latter, one only has to evaluate Λ

g
{(b,d)} and count the di-

mension of the stalks; with Λ one has to evaluate both Λ↓(b,d) and Λ↓̊(b,d), count
dimension, and take a difference.

We see in this example the same interplay between P and A as remarked in
the discussion of direct sums and filtrations. Lattice homomorphism Λg is defined
on a P(R2), and corresponds to a biproduct. It is simple to study and simple to
evaluate: one merely collects the submodules whose birth/death pairs lie in T .
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However, there is something unnatural about Λg. It is not canonically defined, has
no closed form expression in f .

On the other hand, homomorphism Λ is canonically defined, and more natural.
It has more of the flavor of a filtration than a direct sum. In fact we will see that it
is uniquely determined by the filtrations Λ◦ρ0 and Λ◦ρ1 defined

ρ0(t) = R≤t ×R ρ1(t) = R×R≤t ,

so the comparison is quite close.
Since Λ is uniquely determined by f , every detail of its structure relates di-

rectly to the problem of interest. The price of this purity is comfort and familiar-
ity. The power set lattice is more common to the vernacular than the Alexandrov
topology. Computations, whether by hand or machine, are simpler and more in-
tuitive in regimes where biproducts abound. This is evidenced by the two-decade
gap between the date of the first definition of the persistence diagram for modules
with linear coefficients by Robinson in 19xx, and that of Abelian modules by Pa-
tel in 20xx. Today, the former has over 30 computer implementations deployed
across research and industrial organizations in mathematics, engineering, and the
sciences. At present, the latter has none.

A.2.3 The general case

The example of Λ and Λg strongly suggests a key structural relationship between
the persistence module f and the family of homomorphisms X(P) → Sub( f ),
where X ∈ {A,P}. In this example, poset P is the product order R×R, the first
factor of which corresponds, conceptually, to birth time, the second to death. This
choice of P serves well for a variety of problems, but a general persistence module
can be any functor

f : I→ E

where I is a total order. Common choices for I include Z, Z≥0, and {0, . . . ,N} in
addition to R, so it behooves us to consider the general case P = I× I. Having
determined to operate on this level of generality, it will add little to overall com-
plexity (and will in fact add much to conceptual and notational clarity) to extend
our scope to posets P = I× J, where J is any total order. This product will lie at
the foundation of much of our work.

As to the target E, this may be any category, in principle. To have meaningful
notions of birth, death, etc., however, one generally wants formal notions of image
and kernel, hence exactness. We therefore assume that E is one of the following:
(i) a category of vector spaces and linear maps, (ii) an abelian category, or (iii) a
Puppe exact category. The reader may assume vector spaces at loss to essential
understanding.

In summary, we have trained our attention on lattice homomorphisms

Λ : X(I×J)→ Sub(V ) (X ∈ {P,A})

where I and J are total orders, and where V is some object in a category of the
reader’s choosing. These maps constitute the basic object of our study.
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B Appendix: continuous and algebraic lattices
If a, b are elements of a complete lattice L, then a is way below b, written a� b, if
for every S such that b≤

∨
S there exists a finite T ⊆ S such that a≤

∨
T . Element

a is compact if a� a.
A base for L is a subset B⊆ L such that every b ∈ L is the supremum of some

directed set D⊆ B. A base is compact if every element of B is compact.
A complete lattice is continuous if it satisfies any of the following equivalent

criteria: (i) L has a base, (ii) B = {b ∈ L : b� c for some c} is a base, (iii) c =∨
b�c b for all c ∈ L. A continuous lattice is algebraic if it has a compact base.

Example 4. Let V be a module of ring R, and L be the lattice of submodules of
V . Then every cyclic submodule is compact as an element of L. The compact
elements of L are exactly the finite joins of cyclic submodules, and the set of all
such modules is a base for L. In particular, L is continuous.

Example 5. Let L = R∪{−∞,∞} be the extended real line. Then L is a base unto
itself, and this base is not compact.

A lattice L is upper continuous or meet continuous iff for each x ∈ L, each
directed set D, and each poset homomorphism a : D→ L one has x∧ (

∨
a) =∨

d(x∧ad). It is lower continuous or join continuous iff L∗ is meet continuous. It
is a well known fact that a complete lattice is completely distributive iff it is both
upper and lower continuous. By another useful criterion [18], a complete lattice
L is completely distributive iff there exists a surjective complete lattice homomor-
phism M→ L for some complete ring of sets M.

Lemma 22. Every lattice with a compact base is meet-continuous.

Proof. Let L be a lattice with base B. Let D is a directed set and a : D→ L a
poset homomorphism. If x =

∨
d∈D ad and b ∈ B≤x then there exists a finite subset

S⊆D such that b≤
∨

s∈S as, by compactness. Since D is directed, there then exists
d ∈D such that b≤ ad . Thus B≤x =

⋃
d∈D B≤ad . Now, fix c ∈ L, and suppose that

y =
∨

d∈D(ad ∧ c) exists. Then

B≤y =
⋃

d∈D

B≤ad∧c =
⋃

d∈D

(B≤ad ∩B≤c) = B≤x∩B≤c = B≤x∧c

hence y =
∨

B≤y =
∨

B≤x∧c = x∧ c. The desired conclusion follows.
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