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ABSTRACT

Artificial systems currently outperform humans in diverse computational domains,
but none has achieved parity in speed and overall versatility of mastering novel
tasks. A critical component to human success, in this regard, is the ability to rede-
ploy and redirect data passed between cognitive subsystems (via abstract feature
representations) in response to changing task demands. The present work formal-
izes this coordination procedure in terms of multiaffine functions of stimulus and
control states. In experiments, the resulting model robustly predicts behavior and
performance of multitasking networks on natural language data (MNIST) using
common deep network architectures. Consistent with existing theory in cognitive
control, representation structure varies in response to (a) environmental pressures
for representation sharing, (b) demands for parallel processing capacity, and (c)
tolerance for crosstalk. Implications for geometric (dimension, curvature), func-
tional (automaticity, generalizability, modularity), and applied aspects of repre-
sentation learning are discussed.

The separation of cognitive or sensory data into distinct dimensions, or features, is a central theme
of intelligent systems (Kriegeskorte and Kievit, 2013; LeCun et al., 2015; Yamins et al., 2014). De-
termining how agents divide and recombine distinct channels of feature information to pursue higher
goals is famously complex and challenging, and has been studied in many forms, e.g. distributed
representation (McClelland et al., 1986) and the binding problem (Treisman, 1996). A common ex-
ample asks how an agent with separate processing pathways for color and size distinguishes scenes
with a blue circle and red square from scenes with a red circle and blue square.

Understanding pairwise interactions between the mechanisms that encode or represent individual
feature channels is a basic step toward addressing this and other questions. While our basic knowl-
edge such interactions remains highly incomplete, recent progress in basic understanding how these
mechanisms operate, both in both humans and in machines, suggests tractable new lines of inquiry.

The present work offers proof of concept for one such direction, posing mild assumptions on under-
lying mechanisms (linear separability of feature data) which have been experimentally supported in
contexts of interest for both human and machine studies (Rigotti et al., 2013; Chung et al., 2018;
Bernardi et al., 2020).

Our test problem consists of constructing a formally rigorous model to robustly predict parallel pro-
cessing capacity in networks trained to perform many tasks. This problem is motivated by scientific
and computational problems in cognitive control, a field centrally concerned with systems that flex-
ibly redirect and redeploy channels of feature data in response to changing environmental demands
(abstraction, generalization) (Cohen et al., 2020).

Specifically, based on limited assumptions of linearity, we present a mathematically rigorous, geo-
metric approach to analyzing networks. We demonstrate its utility by showing that it reveals network
characteristics consistent with numerical evidence in support of the hypothesis that the same mech-
anisms that enable sharing of representations across tasks (and reap the concomitant benefits of
transfer learning, abstraction, and generalization) make a system susceptible to channel-irrelevant
information leaking into systems that otherwise perform correctly, thus inducing cross talk and sig-
nal degradation. Such local interactions have been shown to have global implications for a system
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as a whole, both for parallel processing capacity (as suggested, for example, by existing bodies of
literature linking crosstalk to limitations on parallel processing capacity in humans (Musslick et al.,
2016; 2017; Logan and Gordon, 2001; Townsend and Wenger, 2004; Pashler, 1994)) and for the
macro-scale organization of learning agents in general, and thus the ability to characterize them
formally has potential broad-ranging significance.

In §1 we describe the test domain and its relation to feature representations. In §2 we describe a
class of network architectures designed to operate in this domain, as well as two specific imple-
mentations. In §3 we use a simple test statistic to show that local, geometric comparisons between
feature representations can predict global computational properties of a mutltitask-trained system as
a whole. Consistent with predictions, this tie becomes stronger in deeper layers of network where,
presumably, linear separation of feature values plays a stronger role and exposes the underlying
relationships with greater clarity.

1 BACKGROUND

An attractive approach to the binding problem is to analyze patterns in which the systems that coor-
dinate representations consistently fail. This approach has been explored from a number of angles,
including the domain of parallel processing in human cognition (commonly referred to in cognitive
and neuroscience literature as multitasking (Logan and Gordon, 2001; Musslick et al., 2016), the
performance of multiple tasks simultaneously; this should be contrasted with multitask learning,
a prominent branch of computer science devoted to the study of systems which learn to perform
several different tasks in sequence) (Caruana, 1997; Maurer et al., 2016). The subject of parallel
processing, and the broader field of cognitive control, examines phenomena such as the famous
Stroop effect (subjects struggle to say ”red” when presented with the word ”green” typed in red ink)
in terms underlying representations (Cohen et al., 1990).

One proposal is that Stroop-like effects (and their adverse consequences) result from a strategic
sacrifice in computational abilities. More specifically, it is theorized that the representational struc-
tures which conduce to two desirable aspects of cognition – abstraction and automaticity/parallel
processing capacity – are functionally incompatible in certain circumstances, and that Stroop-like
pheomena result where abstraction has been favored over automaticity.

The key points of this assertion are threefold:

1. If a cognitive process P relies on some feature representation F to perform a specific
function, then information will flow from F to P whenever both F and P are active (unless
external forces intervene to disrupt this transfer; a subject can can choose to speak “red”
when presented with the word “green” typed in red ink, but conscious effort is generally
required to achieve this).

2. If P relies on input from two different sources, say F and G, to perform specific functions
in different contexts, then at any time when F , G, and P are simultaneously active, process
P will receive input from both sources. In some cases these dual inputs will mutually
interfere and thus degrade. In others they will compete, hence the Stroop phenomenon.

3. Consequently, if a putative system architect wishes P to be able to process information
from F while another process Q receives the data stored in G, it will be necessary to route
this data to Q not through G but some other, separate representation G′, which encodes the
same data as G, but which transmits no information to P .

These three points set up the basic tradeoff: if one wishes to process data of the types stored in F and
G simultaneously, then one must build redundancy into the system with G′. This redundancy may
come at a cost, since there are appreciable benefits to sharing a single representation across tasks,
in general. In Ravi et al. (in preparation), for example, networks trained to perform multiple tasks
learned faster when exposed to conditions which favor shared representations, and slower when
required to perform multiple tasks simultaneously during training. Similar effects were observed in
Alon et al. (2017); Musslick et al. (2016; 2017). Such a phenomenon is interesting both in itself, and
more broadly as a an example of the (many) diverse constraints placed on a global learning system
by its local structure.
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While the evidence gathered around this theory is compelling, direct experimental support remains a
challenge. An important reason for this is that the notions of process and representation are difficult
to quantify in many domains of interest. However, work by Rigotti et al. (2013), and more recently
Bernardi et al. (2020), among others, suggests that standard methods may be effective in several do-
mains of interest. The model proposed in these approaches expresses the activity of a computational
unit, e.g. a neuron, as a function

m(c, f) =
∑
d∈D

∑
i≤n χd(c)β

i
d(fi) (1)

where D is a set of contexts, f1, . . . , fn are features (such as size, shape, color), χd is the character-
istic function such that χd(d) = 1 and χd(c) = 0 when c 6= d, and βid is a map from feature features
to activity levels in the unit. To wit, each βid represents a encoding of feature fi specific to context
d.

Such a model has advantages, from a computational standpoint, due to its linear structure; in partic-
ular,m is multiaffine in variables c and f . In the context of parallel performance, it likewise suggests
a simple mechanism for signal interference. Suppose, for example, that F and G correspond to fea-
ture dimensions fi and fj , and that P gathers information about these features from a population of
neurons whose vector of activity patterns m(f, c) is faithfully captured by the regression model. If
P receives data from this population in the form of an affine transformation Tm(f, c) of m(f, c),
and if the regression functions βic and βid are the same for both c, the context where P must read
from G, and d, the context where P must read from F and Q from G, then linearity implies that
Tm(f, c) will vary with G, consistent with the high-level intuition.

This model is attractive both for its simplicity and for its potential applications, but substantial work
is required to examine its validity across a broader range of learning systems, both human and
machine. In §2 we present an example framework to support such investigation.

2 METHODS

To test the basic tenets of the framework outlined in §1, we train families of neural networks in two
environments which, while drawn from natural data, help to expose the underlying representational
structure. Specifically, we seek to verify that (a) networks which share representations, in the form of
similar encoding functions βid estimated through linear regression, consistently induce crosstalk, (b)
this crosstalk, in turn, degrades signal quality, making it functionally impossible to for downstream
processes to extract needed input data.

We first describe the environments, then the networks, and finally, return to the proposed regression
model. Treatment of certain details concerning formal foundations are abbreviated by necessity; the
reader is referred to Lesnick et al. (2020) for a complete exposition.

2.1 TASK ENVIRONMENTS

Consider a hypothetical participant in a study on digit reading. For the purposes of the experiment,
each digit has two meaningful feature dimensions: a parity, fP , valued in the set FP = {even, odd},
and magnitude, fM , valued in the set FM = {big, small}. The agent likewise has two available
action types, or response dimensions: a left-handed press of the D or F key on a keyboard, coded
as a variable rL ∈ RL = {D , F }, or a right-handed button press coded as rR ∈ RR = {J, K}.
If we assign to D and J the meaning of “true” and to F and K the values of “false,” then the
statement “digit is even” determines mappings RP,L : FP → RL and RP,R : FP → RR. Maps
RM,L : FM → RL andRM,R : FM → RR arise similarly for the statement “digit is big.” We refer
to these as action mappings.

It would be physically possible for the participant to execute certain pairs of these action mappings
simultaneously, at least in principle: presented with a single digit, they could indicate parity with the
left hand and, at the same time, indicate magnitude with the right. On the other hand, some combina-
tions of task mappings are either ill-posed (for example, RP,L and RM,L impose mutually exclusive
demands for the action of the left-hand button press, for certain values of parity and magnitude), or
fail to capture the basic phenomena we wish to study (for example, simultaneous execution of each
action mapping in the set {RP,L, RP,R} only requires the subject to process one feature dimension
(parity) simultaneously, rather one distinct feature for each of the action mappings).
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Since we have only one action mapping Rx,y for each ordered pair (x, y) ∈ {P,M} × {L,R}, we
can characterize the set of all feasible combinations, excluding those that are ill posed or redundant,
by the family of (sets of) input-output pairs

C = {{(x1, y1), . . . , (xn, yn)} : xi = xj ⇐⇒ yi = yj ⇐⇒ i = j} (2)
The action mapping associated to c ∈ C is formally characterized as the functionMc such that, for
each j,

Mc(fP , fM )j =

{
Rj (fi) (i, j) ∈ c
null (i, j) /∈ c for any i

(3)

where “null” represents inaction. We call Mc a multitask mapping of arity n, where n is the set
cardinality of c. Where context leaves no room for confusion, we shorten this to n-task or simply
multitask, if we do not wish to specify cardinality.

These definitions naturally generalize across a broad class of task domains: one may add arbitrarily
many new feature dimensions (Fi)i∈I and response dimensions (R)j∈J ; for each pair (i, j), one
may declare an action mapping Fi → Rj . The set of feasible input-output combinations and
associated task mappings are then specified by equation 2 and equation 3, respectively. Letting∏
i Fi denote the Cartesian product of the sets Fi, we refer to the function

M : (
∏
i Fi)×C→

∏
j Rj , (f, c) 7→ Mc(f)

as the agent’s task environment. Since this function comes equipped with an explicit domain and
codomain, it represents an exhaustive specification of all multitasks which the participant might be
asked to perform.

A sample from a task environment is an indexed family ((sk, ck), fk, rk)Nk=1, where

1. rk = (rkj )j∈J =Mck(f
k) is a tuple of responses

2. sk denotes a stimulus, and
3. fk = (fki )i∈I denotes the tuple of feature values associated to that stimulus

For example, in the example experiment one might have ((sk, ck), fk, rk) =
((7, {(P, L)}), (odd, big), (F , null)). A deterministic agent is a function A : S × C →

∏
j Rj ,

where S denotes the space of stimuli.

Finally, to translate this model into concrete operational terms, it will be convenient to fix an injective
embedding ιj : Rj → R̄j from each response dimension Rj into a real-linear vector space R̄j . We
will tacitly identify A with a map S×C→

∏
j R̄j , under this embedding.

2.2 NETWORK MODELS

To test qualitative predictions posed by the theoretical framework outlined in §1, we examined the
hidden layer activity patterns in two classes of neural networks trained as (deterministic) agents in
the parallel-multitasking paradigm described in §2.1.

Each agent operates in a task environment with two feature (respectively, response) dimensions, and
may be completely specified by the following data:

1. A sequence of processing layers L0, . . . , LN with projection maps pα : RLα−1 → RLα

2. A control layer LC with projection maps qα : RLC → RLα for α = 1, . . . , N .
3. A rectification function σα : RLα → RLα for each α = 1, . . . , N

We call L0 the input or stimulus layer and LN the response layer. The response layer subdivides
two equal-sized sublayers LN,0 and LN,1, corresponding to the two response dimensions.

In each case, the control layer LC contains four units labeled by the four elements of I × J , where
I and J are index sets of cardinality 2. We can identify each c ∈ C with its indicator function
χc : I × J → {0, 1}, and this indicator function with an activity pattern in LC.

For α ≥ 1, the unit activity pattern across Lα for user-specified s ∈ RL0 and c ∈ RLC is given
by mα(s, c) = σα(pα(mα−1(s, c)) + qα(c)). Thus each network is completely specified by the
shapes of the layers Lα, the rectifications σα, and the projections pα and qα.
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Figure 1: Schematic of multi-input, multi-output MNIST convolutional autoencoder.

2.2.1 CLASSIFICATION: PARITY AND MAGNITUDE

Description This family of models represents a minimal modification to those presented in Bernardi
et al. (2020) for the purpose of exploring abstract representations. The task environment for these
networks is the parity/magnitude functionM described in §2. The embedding functions ιj : Rj →
R̄j := R2 are one-hot encodings. Stimuli take the form of 28x28 images from the MNIST data.
Digits 1-4 are small, 5-8 big. We exclude 0’s and 9’s so that parity and magnitude have correlation
0.

Architecture Here N = 5, and layers L0, . . . , LN have shapes 28× 28, Nhddn, Nhddn, Nhddn, Nhddn, 4
respectively where Nhddn ∈ {10, 100} is an experimentally controlled parameter. As in Bernardi
et al. (2020), each of projection pα and qα takes form x 7→ x[:]A + b, where A is a weight matrix,
b is a bias term, and x[:] is the row vector obtained by flattening x. The rectification function σα is
ELU (not ReLU) for α < N and logistic for α = N .

2.2.2 IMAGE AUTOENCODING

Description These networks implement an image autoencoder with a twist. Input layer L0 splits
as the disjoint union of two sublayers, L0,0 and L0,1 each of size 28x28. Output layer LN splits
similarly into 28x28 layers LN,0 and LN,1. The inputs to each L0,i consist of a pair of 28x28
MNIST images; concretely, feature dimension Fi is the space of gray-scale images that can be
passed to L0,i. Thus the feature, stimulus, and response sets can all be identified with the same
underlying space of images. Each embedding ιj : Rj → R̄j is an identity function, as is every
action mapping (hence to “perform” task (i, j) means to copy the image from input i to output j).

Architecture HereN = 4. Projection p0 sends an image I to a sum p1,0(I)+p1,1(I), where p1,0 and
p1,1 are convolutional projections with 3x3 kernels, followed by pooling. The final projection p4 :
L3 → L4 splits similarly as a pair of transpose convolutional layers p4,0 and p4,1 with stride 2. Map
p2 : L1 → L2 consists of a convolutional projection followed by pooling, and map p3 : L2 → L3

is transpose convolutional. Layers L1, L2, and L3 have Nchnl, 4, and Nchnl channels, respectively,
where Nchnl ∈ {5, 30} is an experimentally controlled parameter. The rectification function σα is
ReLU for α < N and logistic for α = N .

2.2.3 TRAINING AND TESTING

Networks were implemented in Pytorch and trained with the Adam optimizer using smooth L1 loss.
Training conditions varied along three experimentally controlled parameters: (1) size: Nhddn for
multiclassifiers, and Nchnl for multiautoencoders (2) regularization via L2 penalty with scaled coef-
ficient η ∈ {0, 0.0005}, (3) maximum arity, meaning the maximum n such that the network receives
training samples of arity n. This parameter, denoted Amax, takes values in {1, 2}. Thus, for exam-
ple, networks trained with Amax = 2 receive training data for all four 1-tasks and both 2-tasks. Each
minibatch contains 96 samples, and these samples are divided evenly between tasks (interleaved
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training). Each network was trained for one epoch on the MNIST training set (Deng, 2012). Net-
works trained with maximum arity 1 are called serial trained, and networks with maximum arity 2
are called parallel trained.

For each Nhddn (respectively, Nchnl) we generate a set of 20 random initial weights for the corre-
sponding classifier (respectively, autoencoder) network architecture. These sets provided the initial
conditions for a set of 20 networks each to be trained for the the 23 possible combinations of train-
ing parameters. Networks trained with Amax = 2 which failed to achieve a mean testing loss below
0.05 are excluded from the study, as are all corresponding networks with the same initial conditions
(thus, fixing a size parameter Nhddn or Nchnl, each network in the 4 training conditions specified by
penalty and training can be directly compared to another network with identical initial conditions in
the other 3 conditions). This procedure produced a total of 14 and 18 networks per condition, re-
spectively, for classifiers with Nhddn = 10 and Nhddn = 100, and 18 and 13 networks per condition,
respectively, with Nchnl = 5 and Nchnl = 30.

For each network we evaluated each of the following diagnostic statistics. All statistics were gener-
ated with holdout data from the MNIST test set.

Neural encoding We model the activity pattern in layer Lα after the regression equation 1, where

1. D = C, the set of feasible task combinations defined in equation 2.
2. f = (f0, f1) is the tuple of feature values in input dimensions F0 and F1.

In particular, the contribution of feature dimension Fi to this pattern in context c ∈ C is modeled
by βc(fi), where βc is obtained by least-squares estimate. We define the linear transformation βc
to be the (least squares estimated) neural encoding function, neural representation, or simply the
representation of feature dimension Fi in context c.

Crosstalk (CT1, CT2) quantifies the proportion of information that “leaks” into a response dimen-
sion from an unintended source. Concretely, it is the coefficient of determination in the linear input
to layer LN,j regressed against the feature values in feature dimension F¬i while the network per-
forms the 2-task {(i, j), (¬i,¬j)} (here ¬i ∈ {0, 1} denotes the index such that ¬i 6= i). This
quantity computed separately for test samples where the network is asked to 1-task, CT1 versus
2-task, CT2. Results are averaged within task condition.

Signal degradation (SD) measures the degree to which “true” signal remains discernable in each
response dimension, regardless of degradation or interference. This quantity must be measured
independently of CT, since equal levels of crosstalk can effect different changes on decobability of
a signal under different conditions (just as an equal number of extra credit points may or may not
influence a student’s a final grade, depending on how near they stand to a margin). Specifically,
we seek to determine not how how well or poorly an individual unit u in output layer LN actually
does, but how any classifier could do, given the information provided to u from hidden layer LN−1
in the form of linear input. Since our higher objective is to identify structural characteristics of
hidden representations that preclude signal decoding at the output layer, we apply a metric which,
if anything, overestimates the decodability of signal at this level. Concretely, we train an SVM
classifier to optimally separate trials where output unit u ought to take 0 versus 1 values, given the
linear input passed to that unit via projection map pN . Measure SD is the mean squared error of this
classifier. This coefficient is evaluated separately for each output unit and each of the two 2-tasking
conditions in the test data. Due to the computational cost of fitting one classifier for each output unit
in the autoenoders, we randomly subsample 100 units each for these networks.

Subsampled magnitude of interaction effect (MIE) approximates the overall difference between
representations of a feature dimension fi in two different contexts, c and c′. It is formalized as the
Frobenius norm of the matrix difference |[βic]− [βic′ ]|, where [βic] denotes the array of regression co-
efficients for linear transform βic. In the special case where fi has two levels, this quantity coincides
with the Euclidean norm of the interaction effect1 between predictor variables fi and c. When the
number of levels in a feature dimension is very large, as is the case, for example, with the MNIST
autoencoder task environment, such coefficient matrices can become difficult and computationally
expensive to estimate. We therefore adopt the heuristic strategy of applying the metric to subsam-
ples of two feature values each per input dimension, and averaging over subsamples. Data for the

1This alternate interpretation has also remarked in (Rigotti et al., 2013) and elsewhere.

6



Preprint 2020

regression is drawn from test samples where the network must 2-task (trials where it 1-tasks are
excluded). Results reported in Table 1 are for layer LN−1, for each network.

Hidden variance (VH ) refers to the sum of the mean squared deviation in the in layerLN−1 sampled
during 2-tasking. This statistic functions as a rough estimate of the effective “size” of the point cloud,
which can then be used as a basis for comparison with other measures of size, such as MIE.

2.3 PREDICTIONS

The analytic framework in §1 predicts two distinct representation strategies for networks trained
with and without arity-2 training samples. On the one hand, attractive carrots (such as learning
speed-ups and improved generalization) are thought to encourage network agents to use a single
representation of feature dimension Fi (i = 0, 1) for both action mappings Ri,0 and Ri,1. On the
other hand, a formidable stick (performance loss due to cross talk), is thought to discourage such
practice when executing multitasks of arity ≥ 2, namelyM{(i,0),(¬i,1)} andM{(i,1),(¬i,0)}.
As a result, we predicted that networks exposed only to 1-tasks during training would favor the
“Swiss army kniff” strategy of sharing a single representation of Fi across action mappings Ri,0
and Ri,1, while networks exposed to arity-2 training samples would develop separate, dedicated
representations for each. These qualitative predictions lead to several concrete hypotheses concern-
ing the test statistics in §2.2.3.

Each of the following effects was predicted to hold controlling for extraneous independent variables.

H.1 In parallel-trained networks, crosstalk will account for a relatively low proportion of
hidden-layer variance in both arity-1 and arity-2 test samples (CT1,CT2 ≤ 0.1). Rationale:
Such networks must limit or eliminate crosstalk in order to reduce loss during training.

H.2 In serial-trained networks, crosstalk will account for a relatively high proportion of variance
in arity-2 test samples (CT2 ≥ 0.3), and a relatively low proportion of variance in arity-1
test samples (CT1 ≤ 0.1). Rationale: Even though representations may be shared across
action mappings, a serial-trained network can (and indeed must) suppress the activity of
task-irrelevant feature representations to avoid cross-talk while executing tasks of arity 1.
Such suppression cannot take place while 2-tasking, however, so crosstalk should be higher
in this case.

H.3 For serial-trained networks, regularization (realized either by L2 penalty or by reducing the
number of hidden units or channels) will increase the difference CT2. Rationale: Regular-
ization fosters low-dimensional representations and greater generalizability, the hallmarks
of representation sharing. We therefore predict that regularization will reinforce sharing,
hence crosstalk.

H.4 Networks with higher CT2 will have higher signal degradation SD. Rationale: Since fea-
ture variables are uncorrelated, crosstalk in the linear input to units in LN should erode the
ability of the network to decode true signal. The relationship between CT2 and SD is far
from direct, however, as noted in §2.2.3, and we predict no precise numeric relationship
between the two, beyond this coarse pairwise comparison.

H.5 Arity-2 crosstalk will be lower in parallel-trained networks (CTprll
2 ) than in serial-trained

networks (CTsrl
2 ). Concretely, CTprll

2 /CTsrl
2 ≤ 1/2. Rationale: Hypotheses H.1 and

H.2 make relatively conservative absolute predictions about the proportion of variance ex-
plained by crosstalk since CT2 exerts only an indirect influence on training loss, mediated
by SD and other factors. However, in relative terms CTprll

2 should be significantly larger
than CTsrl

2 .
H.6 Networks with high arity-2 crosstalk (CT2 ≥ 0.3) will have relatively high objective loss on

arity-2 test samples. However, networks with low CT2 may have high objective loss, also.
Rationale: By design, signal degradation SD imposes a hard upper bound on 2-tasking
performance. However, exogenous factors may drive loss higher. This was a common phe-
nomenon in pilot studies modeled off the networks of (Musslick et al., 2016) and (Musslick
et al., 2017).

H.7 Networks with higher MIE will have lower CT2 and lower SD. Rationale: This hypothesis
rests on three ideas: (i) MIE measures dissimilarity between feature representations in
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Figure 2: Values projected from hidden layer LN to the output layer (prior to combination with
values projected from the control layer, and logistic rectification) in two of the trained convolutional
autoencoders. Top row: a parallel-trained network. Bottom row: a serial-trained network. Left: Input
to the network. Center left: projection for task {(0, 0)}, Center right: projection for task {(1, 1)},
Right: projection for task {(0, 0), (1, 1)}. Each 28x28 projection is normalized by shifting and
rounding-up extreme negative values; in particular, the left and right sides of each 28x56 image may
have separate scaling coefficients. In general, task-irrelevant output dimensions took much lower
values than task-relevant output dimensions.

different contexts, (ii) networks are “motivated” to deploy similar representations across
different tasks when possible, and (iii) one of few motivating factors to depart from this
paradigm is to reduce CT2, and with it SD.

The numerical upper and lower bounds specified above are highly approximate; their purpose is
primarily to convey coarse, order-of magnitude estimates based on the experimenters experience
with similar models.

3 RESULTS AND DISCUSSION

Experimental results appear in Table 1. Due to the large number of variables concerned, individ-
ual p-values are not reported, only mean differences. However, in most cases significance can be
determined by cursory inspection of Table 1. The salient trends are as follows:

Signal degradation in serial-trained networks is higher than in parallel-trained networks. This
holds true across training conditions. In the case of multiclassifiers, best-case decoding error in
serial-trained networks is more than twice that of parallel-trained networks.

Crosstalk is highest in serial-trained networks tested on parallel processing tasks. In all but two
cases (specifically, the two unregularized training conditions for serial-trained networks), variation
in the task-irrelevant feature dimension accounts for over 45% of variance in the task-relevant re-
sponse dimension. Neither serial-training nor parallel-testing is independently sufficient to produce
this effect; one must combine the two. This is consistent with the idea that networks inhibit repre-
sentations which are not currently of use (in part because activation of these representations is liable
to produce crosstalk). See Figure efig:MNISTimages.

Representations overlap more in serial-trained networks than in parallel-trained networks. The
ratio of MIE to VH indicates that the multiaffine model fits these data well, in general.

Regularization accentuates the distinction between serial and parallel trained networks. This is
consistent with the view of regularization as a tool which discourages overfitting and favor general-
ization, abstraction, and transferability. Under such pressures one expects a network to adopt shared
representations where possible. It is particularly pronounced in the classifier networks, where regu-
larization produces very small interaction effects (MIE), especially when compared with the variance
of the ambient point cloud (VH ).

Exogenous inputs mask the effects of signal degradation. This point is most pronounced in the time
course of training for classification networks shown in Figure 3. The salient feature of this plot is
that serial-trained networks without regularization achieve a relatively low degree of cross talk; it
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Model Size Nsmpl Reg Arity MIE Loss 2-task SD CT2 CT1 VH

Par./Mag. 10 15 1 serial 0.535± 0.19 0.167± 0.008 0.325± 0.028 0.457± 0.029 0.122± 0.14 4.24± 2.04
Par./Mag. 10 15 1 parallel 3.93± 1.27 0.065± 0.014 0.142± 0.047 0.144± 0.113 0.077± 0.072 5.49± 1.82
Par./Mag. 10 15 0 serial 4.13± 2.68 0.175± 0.021 0.252± 0.066 0.325± 0.116 0.069± 0.032 26.3± 8.19
Par./Mag. 10 15 0 parallel 9.26± 1.73 0.052± 0.007 0.117± 0.018 0.11± 0.041 0.065± 0.037 24.4± 7.6
Par./Mag. 100 20 1 serial 0.681± 0.318 0.17± 0.009 0.322± 0.022 0.465± 0.027 0.104± 0.1 5.72± 2.73
Par./Mag. 100 20 1 parallel 5.77± 0.538 0.056± 0.006 0.119± 0.013 0.151± 0.046 0.062± 0.033 8.47± 2.89
Par./Mag. 100 20 0 serial 21.2± 7.11 0.136± 0.042 0.203± 0.087 0.207± 0.087 0.157± 0.095 265.0± 102.0
Par./Mag. 100 20 0 parallel 32.2± 5.14 0.048± 0.007 0.111± 0.025 0.153± 0.07 0.095± 0.054 292.0± 81.5
Autoenc. 5 18 1 serial 8.03± 3.83 0.083± 0.009 0.192± 0.015 0.49± 0.033 0.046± 0.096 443.0± 174.0
Autoenc. 5 18 1 parallel 15.2± 5.04 0.037± 0.005 0.134± 0.019 0.195± 0.122 0.051± 0.018 347.0± 93.4
Autoenc. 5 18 0 serial 17.1± 4.9 0.083± 0.013 0.176± 0.015 0.49± 0.008 0.062± 0.154 1680.0± 521.0
Autoenc. 5 18 0 parallel 25.6± 6.3 0.034± 0.005 0.129± 0.02 0.239± 0.093 0.029± 0.009 935.0± 217.0
Autoenc. 30 13 1 serial 5.08± 3.28 0.079± 0.008 0.194± 0.017 0.48± 0.028 0.129± 0.167 291.0± 120.0
Autoenc. 30 13 1 parallel 22.7± 3.07 0.025± 0.004 0.098± 0.012 0.144± 0.021 0.056± 0.008 452.0± 138.0
Autoenc. 30 13 0 serial 11.9± 4.92 0.105± 0.014 0.201± 0.019 0.484± 0.014 0.327± 0.219 3950.0± 3150.0
Autoenc. 30 13 0 parallel 42.3± 6.98 0.022± 0.001 0.085± 0.009 0.152± 0.013 0.037± 0.007 1780.0± 359.0

Table 1: Network statistics: mean and standard deviation. Size refers to Nchnl in autoencoder net-
works, and to Nhddn in parity/magnitude classifiers. For each network size, 20 sets of initial weights
were randomly generated; this set was then used to initialize 20 networks in each of four different
training groups (corresponding to four blocks of rows in the table) in order to examine effect of
training condition while controlling for initial conditions. Networks which failed to achieve testing
loss below a set threshold were excluded (this criterion was applied only to 1-tasks for serial-trained
networks, and to both 1- and 2-tasks for parallel-trained networks, consistent with training), leaving
a sample size of 13 ≤ Nsmpl ≤ 20 networks in each condition. Arity indicates maximum ar-
ity of training samples; serial-trained networks were trained only on 1-tasks, while parallel-trained
networks were trained on of cardinality 1 and 2 (interleaved). A value of 1 under Reg indicates
use of L2 penalty, while 0 indicates no penalty. Loss 2-task refers to average loss on held-out test
data. Variables MIE, SD, CT1, CT2, and VH are described in §2.2.3. All measures of hidden-layer
activity refer to the penultimate network layer, LN−1.

remains relatively closer to to the curve for parallel-trained networks, both with and without regu-
larization, that to regularized serial-trained networks. This fact is reflected in relatively low levels of
signal degradation, consistent with the proposed connection between the two. However, the test loss
experience by the network for both regularized and unregularized serial-trained networks is similar.
The explanation for the divergence in these two trends lies with exogenous input from the control
layer to the output layer. In serial-task training scenarios, there is no penalty to inhibiting task-
irrelevant response dimensions when any single task in undertaken. When two tasks are attempted
simultaneously, the automated inhibitory effects from each can suppress the other.

MIE detects difference in crosstalk, signal degradation. This is true both as seen in Table 1 and
in Figures 3 and 4. In particular, ratio of MIE in single versus parallel trained conditions remains
approximately proportionate to that between parallel-trained and serial-trained crosstalk, even in the
the case of unregularized serial-trained classifiers which deviate from the norm and achieve low
levels of crosstalk and signal degradation. The relation admits a constant offset:, in particular, the
red curves in the lefthand plot of Figure 4 lie vertically above the blue, while in all cases to the right
corresponding curves lie directly atop one another.

Results overall conform to the qualitative and numerical predictions H.1-H.7, with two significant
exceptions in feed-forward multiclassifier networks. First, the effects in these networks, while size-
able, were often smaller than numerically predicted (H.1, H.2, H.5). In most cases this, this nu-
merical inaccuracy can be explained by underestimation of the ability of networks to “cope” with
CT2 signal interference. Second, serial-trained feedforward multiclassifiers trained without L2-
regularization failed to realize the tell-tail characteristics of shared representation; in particular, they
had significantly lower CT2 and SD. However, this was the exception that proved the rule, as
these networks also had uncharacteristically low SD. These exceptional cases also illustrate the
importance of distinguishing SD from objective loss in assessing the performance implications of
crosstalk, since objective loss in these networks in fact conforms to overall predictions (presumably
due signal passed from the control units directly to the output layer).
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Figure 3: Network statistics (MIE, CT2, SD, objective loss) over the time course of training in
multiclassifier networks. Units of x-axis are number of training samples. Objective loss is measured
on held-out test data with samples of arity 2.

Figure 4: Network statistics (MIE, CT2, SD, objective loss) over the time course of training in
autoencoder networks. Units of x-axis are number of training samples. Objective loss is measured
on held-out test data with samples of arity 2.
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4 CONCLUSION

Formal accounts of neural encoding of feature representations are basic to explainable models in
artificial intelligence and cognitive science generally. In the present work, we applied an elemen-
tary model based on limited assumptions of linearity (Rigotti et al., 2013) to evaluate theoretical
accounts of parallel processing constraints in learning agents. To do so, we trained neural network
architectures inspired by (Musslick et al., 2017; Bernardi et al., 2020) to perform multiple tasks
with natural language (MNIST) data. Some networks were trained to perform multiple tasks si-
multaneously/in parallel, while others were allowed to switch tasks in a purely serial fashion. The
parallel processing capacity of these models, measure in terms of the accuracy with which they were
able to perform multiple tasks simultaneously, successfully reproduced trends seen both in human
and in prior network models. In this controlled setting, the proposed model succeeded in establish-
ing a direct numerical link between structure of neural feature representations and crosstalk on the
level of individual unit activations. This link is noteworthy both from machine learning and neuro-
science perspectives, as it relies exclusively on properties of the system that can be observed from
activity patterns, without reference to connection weights. One consequence of this relationship is
the formalization of quantitative local-to-global principle between functional connectivity of feature
representations, on the one hand, and macro-scale system properties on the other. Implications for
more advanced multitasking agents, both human and machine, are investigated in ongoing work.
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